Stress propagation

Getting to the bottom of a granular medium

A surprising resistance would be put up by sand grains hiding a buried treasure chest.

Abstract

Penetration by an object through a dense granular medium (for example, by a finger pushing slowly into the sand on a beach) presents an interesting physics problem1 that is closely related to issues of practical importance in soil science2,3. Here we measure the penetration-resistance force for an object approaching the solid bottom boundary of a granular sample — analogous to the finger approaching a flat rock buried in the beach. We find that the penetration resistance near the boundary increases exponentially, which demonstrates the existence of an intrinsic length scale to the ‘jamming’ caused by a locally applied stress.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Penetration effects of an object approaching the solid bottom boundary of a granular sample.

References

  1. 1

    Albert, R., Pfeifer, M. A., Barabási, A.-L. & Schiffer, P. Phys. Rev. Lett. 82, 205–208 (1999).

    CAS  Article  ADS  Google Scholar 

  2. 2

    Yu, H. S. & Mitchell, J. K. J. Geotech. Geoenvir. Eng. 124, 140–149(1998).

    Article  Google Scholar 

  3. 3

    Peterson, R. W. in Calibration Chamber Testing: PTProc. First Intl Symp. Calibration Chamber Testing (ed. Huang, A.-B.) 315–328 (Elsevier, New York 1991).

    Google Scholar 

  4. 4

    Vanel, L. & Clément, E. Eur. Phys. J. 11, 525–533 (1999).

    CAS  Article  ADS  Google Scholar 

  5. 5

    Geng, J. et al. Phys. Rev. Lett. 87, 035506–035509 (2001).

    CAS  Article  ADS  Google Scholar 

  6. 6

    Liu, C.-H. et al. Science 269, 513–515 (1995).

    CAS  Article  ADS  Google Scholar 

  7. 7

    Da Silva, M. & Rajchenbach, J. Nature 406, 708–710(2000).

    CAS  Article  ADS  Google Scholar 

  8. 8

    Reydellet, G. & Clément, E. Phys. Rev. Lett. 86, 3308–3311 (2001).

    CAS  Article  ADS  Google Scholar 

  9. 9

    Bouchaud, J. P., Cates, M. E. & Claudin, P. J. Physique I 5, 639–656 (1995).

    ADS  Google Scholar 

  10. 10

    Mueggenburg, N. W., Jaeger, H. M. & Nagel, S. R. Phys. Rev. E 66, 031304–031312 (2002).

    Article  ADS  Google Scholar 

  11. 11

    Liu, A. J. & Nagel, S. R. Nature 396, 21–22 (1998).

    CAS  Article  ADS  Google Scholar 

  12. 12

    O'Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Phys. Rev. Lett. 86, 111–114 (2001).

    CAS  Article  ADS  Google Scholar 

  13. 13

    Vergeles, M., Keblinski, P. Koplik, J. & Banavar, J. R. Phys. Rev. Lett. 75, 232–235 (1995).

    CAS  Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Schiffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stone, M., Bernstein, D., Barry, R. et al. Getting to the bottom of a granular medium. Nature 427, 503–504 (2004). https://doi.org/10.1038/427503a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.