Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A signature motif in transcriptional co-activators mediates binding to nuclear receptors

Abstract

The binding of lipophilic hormones, retinoids and vitamins to members of the nuclear-receptor superfamily modifies the DNA-binding and transcriptional properties of these receptors, resulting in the activation or repression of target genes1,2. Ligand binding induces conformational changes in nuclear receptors and promotes their association with a diverse group of nuclear proteins, including SRC-1/p160 (3-5), TIF-2/GRIP-1 (refs 6, 7) and CBP/p300 (refs 4, 5, 8, 9) which function as co-activators of transcription, and RIP-140 (ref. 10), TIF-1 (ref. 11) and TRIP-1/SUG-1 (refs 12, 13) whose functions are unclear. Here we report that a short sequence motif LXXLL (where L is leucine and X is any amino acid) present in RIP-140, SRC-1 and CBP is necessary and sufficient to mediate the binding of these proteins to liganded nuclear receptors. We show that the ability of SRC-1 to bind the oestrogen receptor and enhance its transcriptional activity is dependent upon the integrity of the LXXLL motifs and on key hydrophobic residues in a conserved helix (helix 12) of the oestrogen receptor that are required for its ligand-induced activation function14. We propose that the LXXLL motif is a signature sequence that facilitates the interaction of different proteins with nuclear receptors, and is thus a defining feature of a new family of nuclear proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of LXXLL motifs derived from co-activators with the ER.
Figure 2: The LXXLL sequence is a signature motif in proteins that bind the LBDs of nuclear receptors.
Figure 3: LXXLL motifs are required for binding of SRC-1 to the ER LBD in vitro and for the ability of SRC-1 to enhance ER activity in vivo.

Similar content being viewed by others

References

  1. Beato, M., Herrlich, P. & Shutz, G. Steroid-hormone receptors—many actors in search of a plot. Cell 83, 851–857 (1995).

    Article  CAS  Google Scholar 

  2. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  3. Onate, S. A., Tsai, S. Y., Tsai, M.-J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Kamei, Y. et al. ACBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  Google Scholar 

  5. Yao, T.-P., Ku, G., Zhou, N., Scully, R. & Livingston, D. M. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl Acad. Sci. USA 93, 10626–10631 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Voegel, J. J., Heine, M. J. S., Zechel, C., Chambon, P. & Gronemeyer, H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 101–108 (1996).

    Article  Google Scholar 

  7. Hong, H., Kohli, K., Trivedi, A., Johnson, D. L. & Stallcup, M. R. Grip1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone-binding domains of steroid-receptors. Proc. Natl Acad. Sci. USA 93, 4948–4952 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Chakravarti, D. et al. Role of CBP/p300 in nuclear receptor signalling. Nature 383, 99–103 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Hanstein, B. et al. p300 is a component of an estrogen receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 11540–11545 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Cavaillès, V. et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14, 3741–3751 (1995).

    Article  Google Scholar 

  11. Le Douarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptor, is fused to B-raf in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995).

    Article  CAS  Google Scholar 

  12. Lee, J. W., Ryan, F., Swaffield, J. C., Johnston, S. A. & Moore, D. D. Interaction of thyroid-hormone receptor with a conserved transcription mediator. Nature 374, 91–94 (1995).

    Article  ADS  CAS  Google Scholar 

  13. vom Baur, E. et al. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 15, 110–124 (1996).

    Article  CAS  Google Scholar 

  14. Danielian, P. S., White, R., Lees, L. A. & Parker, M. G. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033 (1992).

    Article  CAS  Google Scholar 

  15. L'Horset, F., Dauvois, S., Heery, D. M., Cavaillès, V. & Parker, M. G. RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol. Cell. Biol. 16, 6029–6036 (1996).

    Article  CAS  Google Scholar 

  16. Rost, B. & Sander, C. Improved prediction of protein secondary structure by use of sequence profiles and neural network. Proc. Natl Acad. USA 90, 7558–7562 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Kwok, R. P. S. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Arias, J. et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370, 226–229 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Yeh, S. & Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl Acad. Sci. USA 93, 5517–5521 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Yoshinaga, S. K., Peterson, C. L., Herskowitz, I. & Yamamoto, K. R. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258, 1598–1604 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Stein, B. & Yang, M. X. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-κ and C/EBPβ. Mol. Cell. Biol. 15, 4971–4979 (1995).

    Article  CAS  Google Scholar 

  22. Metzger, D., Losson, R., Bornert, J.-M., Lemoine, Y. & Chambon, P. Promoter specificity of the two transcriptional activation functions of the human oestrogen receptor in yeast. Nucleic Acids Res. 20, 2813–2817 (1992).

    Article  CAS  Google Scholar 

  23. Le Douarin, B., Pierrat, B., vom Baur, E., Chambon, P. & Losson, R. Anew version of the two-hybrid assay for detection of protein–protein interactions. Nucleic Acids Res. 23, 876–878 (1995).

    Article  CAS  Google Scholar 

  24. Cavaillès, V., Dauvois, S., Danielian, P. S. & Parker, M. G. Interaction of proteins with transcriptionally active estrogen receptors. Proc. Natl Acad. Sci. USA 91, 10009–10013 (1994).

    Article  ADS  Google Scholar 

  25. Montano, M. M., Ekena, K., Krueger, K. D., Keller, A. L. & Katsenellenbogen, B. S. Human estrogen-receptor ligand activity inversion mutants—receptors that interpret antiestrogens as estrogens and estrogens as antiestrogens and discriminate among different antiestrogens. Mol. Endocrinol. 10, 230–242 (1996).

    CAS  PubMed  Google Scholar 

  26. Eckner, R. et al. Molecular cloning and functional analysis of the adenovirus E1A associated 300 kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8, 869–884 (1994).

    Article  CAS  Google Scholar 

  27. Le Douavin, B. et al. Apossible involvement of TIF1α and TIF1β in the epigenetic control of transcription by nuclear receptors. EMBO J. 15, 6701–6715 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for discussion and for communicating unpublished results; P. Freemont, N. Jones and A. Parker for their suggestions and for critically reading the manuscript; P. Chambon for pBL1, pASV3 and the anti-ER monoclonal antibody; B. Katzenellenbogen for 2EREppS2-CAT; N. Jones for the yeast strain; K. Hobbs for oligonucleotides; N. O'Reilly for peptides; W. Bessant for photography; and G. Clark for automated sequencing. D.M.H. and E.K. were supported by grants from the European Community TMR program and the Netherlands Organisation of Scientific Research (NWO), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm G. Parker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heery, D., Kalkhoven, E., Hoare, S. et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997). https://doi.org/10.1038/42750

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42750

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing