Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional organization of a human water channel

Abstract

Aquaporins (AQP) are members of the major intrinsic protein (MIP) superfamily of integral membrane proteins and facilitate water transport in various eukaryotes and prokaryotes1,2. The archetypal aquaporin AQP1 is a partly glycosylated water-selective channel3,4 that is widely expressed in the plasma membranes of several water-permeable epithelial and endothelial cells2,5. Here we report the three-dimensional structure of deglycosylated, human erythrocyte AQP1, determined at 7Å resolution in the membrane plane by electron crystallography of frozen-hydrated two-dimensional crystals6,7. The structure has an in-plane, intramolecular 2-fold axis of symmetry located in the hydrophobic core of the bilayer. The AQP1 monomer is composed of six membrane-spanning, tilted α-helices. These helices form a barrel that encloses a vestibular region leading to the water-selective channel, which is outlined by densities attributed to the functionally important NPA boxes8 and their bridges to the surrounding helices. The intramolecular symmetry within the AQP1 molecule represents a new motif for the topology and design of membrane protein channels, and is a simple and elegant solution to the problem of bidirectional transport across the bilayer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo pair of the three-dimensional density map of frozen-hydrated, deglycosylated, human erythrocyte AQP1, viewed approximately perpendicular to the bilayer, showing one monomer and portions of adjacent monomers within a tetramer.
Figure 2: Intra- and inter-monomer interactions.
Figure 3: Demonstration of the in-plane pseudo-2-fold symmetry in the AQP1 monomer.
Figure 4: A surface-shaded representation showing an example of bridging density that suggests linkages of the central block (asterisk) to helices D and F.

Similar content being viewed by others

References

  1. Verkman, A. S. Water Channels (Landes, Austin, TX, (1993)).

    Google Scholar 

  2. Agre, P., Brown, D. & Nielsen, S. Aquaporin water channels: unanswered questions and unresolved controversies. Curr. Opin. Cell Biol. 7, 472–482 (1995).

    Article  CAS  Google Scholar 

  3. Zeidel, M. L., Ambudkar, S. V., Smith, B. L. & Agre, P. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31, 7436–7440 (1992).

    Article  CAS  Google Scholar 

  4. van Hoek, A. N. & Verkman, A. S. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J. Biol. Chem. 267, 18267–18269 (1992).

    CAS  PubMed  Google Scholar 

  5. Verkman, A. S. et al. Water transport across mammalian cell membranes. Am. J. Physiol. 270, C12–C30 (1996).

    Article  CAS  Google Scholar 

  6. Mitra, A. K., Yeager, M., van Hoek, A. N., Wiener, M. C. & Verkman, A. S. Projection structure of the CHIP28 water channel in lipid bilayer membranes at 12-Å resolution. Biochemistry 33, 12735–12740 (1994).

    Article  CAS  Google Scholar 

  7. Mitra, A. K., van Hoek, A. N., Wiener, M. C., Verkman, A. S. & Yeager, M. The CHIP28 water channel visualized in ice by electron crystallography. Nature Struct. Biol. 2, 726–729 (1995).

    Article  CAS  Google Scholar 

  8. Jung, J. S., Preston, G. M., Smith, B. L., Guggino, W. B. & Agre, P. Molecular structure of the water channel through aquaporin CHIP: the hourglass model. J. Biol. Chem. 269, 14648–14654 (1994).

    CAS  PubMed  Google Scholar 

  9. Denker, B. M., Smith, B. L., Kuhajda, F. P. & Agre, P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263, 15634–15642 (1988).

    CAS  PubMed  Google Scholar 

  10. Walz, T., Typke, D., Smith, B. L., Agre, P. & Engel, A. Projection map of aquaporin-1 determined by electron crystallography. Nature Struct. Biol. 2, 730–732 (1995).

    Article  CAS  Google Scholar 

  11. Jap, B. K. & Li, H. Structure of the osmo-regulated H2 O-channel, AQP-CHIP, in projection at 3.5Å resolution. J. Mol. Biol. 251, 413–420 (1995).

    Article  CAS  Google Scholar 

  12. Henderson, R. & Unwin, P. N. T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Kühlbrandt, W. & Wang, D. N. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350, 130–134 (1991).

    Article  ADS  Google Scholar 

  14. Gorin, M. B., Yancey, S. B. Cline, J., Revel, J.-P. & Horwitz, J. The major intrinsic protein (MIP) of lens fiber membrane. Cell 39, 49–59 (1984).

    Article  CAS  Google Scholar 

  15. Preston, G. M., Jung, J. S., Guggino, W. B. & Agre, P. Membrane topology of aquaporin CHIP: analysis of functional epitope-scanning mutants by vectorial proteolysis. J. Biol. Chem. 269, 1668–1673 (1994).

    CAS  PubMed  Google Scholar 

  16. Chothia, C., Levitt, M. & Richardson, D. Helix to helix packing in proteins. J. Mol. Biol. 145, 215–250 (1981).

    Article  CAS  Google Scholar 

  17. Walz, T. et al. Surface topographies at subnanometer-resolution reveal asymmetry and sidedness of aquaporin-1. J. Mol. Biol. 264, 907–918 (1996).

    Article  CAS  Google Scholar 

  18. Park, J. H. & Saier, M. H. Jr. Phylogenetic characterization of the MIP family of transmembrane channel proteins. J. Membr. Biol. 153, 171–180 (1996).

    Article  CAS  Google Scholar 

  19. Wistow, G. J., Pisano, M. M. & Chepelinsky, A. B. Tandem sequence repeats in transmembrane channel proteins. Trends Biochem. Sci. 16, 170–171 (1991).

    Article  CAS  Google Scholar 

  20. Smith, B. L. & Agre, P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266, 6407–6415 (1991).

    CAS  PubMed  Google Scholar 

  21. Sather, W. A., Yang, J. & Tsien, R. W. Structural basis of ion channel permeation and selectivity. Curr. Opin. Neurobiol. 4, 313–323 (1994).

    Article  CAS  Google Scholar 

  22. van Hoek, A. N. et al. Purification and structure-function analysis of native, PNGase F-treated and endo-β-galactosidase treated CHIP28 water channels. Biochemistry 34, 2212–2219 (1995).

    Article  CAS  Google Scholar 

  23. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  24. Agard, D. A. Aleast squares method for determining structure factors in three-dimensional tilted-view reconstructions. J. Mol. Biol. 167, 849–852 (1983).

    Article  CAS  Google Scholar 

  25. Unger, V. M. & Schertler, G. F. X. Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys. J. 68, 1776–1786 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996).

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project No. 4. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  28. Upson, C. et al. The application visualization system: A computational environment for scientific visualization. Comput. Graph. Appl. 9, 30–42 (1989).

    Article  Google Scholar 

  29. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank V. Unger and R. Nunn for discussions; M. Pique for help in generating the stereograph; and R. Milligan, R. Nunn, V. Unger and M. Wiener for comments on the manuscript. This work was supported by grants from the NIH (A.K.M., A.S.V. and M.Y.), a grant-in-aid from the American Heart Association (A.K.M.) and the Donald E. and Delia B. Baxter Research Foundation (M.Y.). M.Y. is an established investigator of the American Heart Association and is supported by Bristol Myers-Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, A., van Hoek, A., Yeager, M. et al. Three-dimensional organization of a human water channel. Nature 387, 627–630 (1997). https://doi.org/10.1038/42517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42517

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing