Functional rafts in cell membranes

Article metrics


A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer. It is proposed that these rafts function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Model for the organization of rafts and caveolae in the plasma membrane.
Figure 2: Two postulated post-Golgi circuits in MDCK cells (a) and fibroblasts (b).


  1. 1

    Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

  2. 2

    van Meer, G. Lipid traffic in animal cells. Annu. Rev. Cell Biol. 5, 247–275 (1989).

  3. 3

    Kusumi, A. & Sako, Y. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8, 566–574 (1996).

  4. 4

    Rodriguez-Boulan, E. & Nelson, W. J. Morphogenesis of the polarized epithelial cell phenotype. Science 245, 718–725 (1989).

  5. 5

    Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988).

  6. 6

    van Helvoort, A. et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while M P-glycoprotein specifically translocates phosphatidylcholine. Cell 87, 507–518 (1996).

  7. 7

    Brown, D. & Rose, J. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).

  8. 8

    Parton, R. G. Caveolae and caveolins. Curr. Opin. Cell Biol. 8, 542–548 (1996).

  9. 9

    Tran, D. J., Carpentier, J. L., Sawano, F., Gorden, P. & Orci, L. Ligands internalized through coated or non-coated invaginations follow a common intracellular pathway. Proc. Natl Acad. Sci. USA 84, 7957–7961 (1987).

  10. 10

    Rothberg, K. G., Ying, Y. S., Kamen, B. A. & Anderson, R. G. W. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J. Cell Biol. 111, 2931–2938 (1990).

  11. 11

    Ghitescu, L., Fixman, A., Simionescu, M. & Simionescu, N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J. Cell Biol. 102, 1304–1311 (1986).

  12. 12

    Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V. & Simons, K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12, 1597–1605 (1993).

  13. 13

    Morrow, M. R., Singh, D., Lu, D. & Grant, C. W. M. Glycosphingolipid fatty acid arrangement in phospholipid bilayers: cholesterol effects. Biophysical J. 68, 179–186 (1995).

  14. 14

    Boggs, J. M. & Koshy, K. M. Do the long fatty acid chains of sphingolipids interdigitate across the center of bilayer of shorter chain symmetric phospholipids? Biochim. Biophys. Acta 1189, 233–241 (1994).

  15. 15

    Parton, R. G. & Simons, K. Digging into caveolae. Science 269, 1398–1399 (1995).

  16. 16

    Schroeder, R., London, E. & Brown, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol(GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl Acad. Sci. USA 91, 12130–12134 (1994).

  17. 17

    Skibbens, J. E., Roth, M. G. & Matlin, K. S. Differential extractibility of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and nonpolar fibroblasts. J. Cell Biol. 108, 821–832 (1989).

  18. 18

    Sargiacomo, M., Sudol, M., Tang, Z. & Lisanti, M. P. Signal transducing molecules and GPI-linked proteins from a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 122, 789–807 (1993).

  19. 19

    Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J. Biol. Chem. 269, 30745–30748 (1994).

  20. 20

    Danielsen, E. M. Atransferrin-like GPI-linked iron-binding protein in detergent-insoluble noncaveolar microdomains at the apical surface of fetal intestinal epithelial cells. Biochemistry 34, 1596–1605 (1995).

  21. 21

    Casey, P. J. Protein lipidation in cell signalling. Science 268, 221–225 (1995).

  22. 22

    Cerneus, D. P., Ueffing, E., Posthuma, G., Strous, G. J. & van der Ende, A. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J. Biol. Chem. 268, 3150–3155 (1993).

  23. 23

    Hanada, K., Nishijima, M., Akamatsu, Y. & Pagano, R. E. Both sphingolipids and cholesterol participate in the detergent-insolubility of alkaline phosphatase, a glycosyl-phosphatidylinositol anchored protein in mammalian cells. J. Biol. Chem. 270, 6254–6260 (1995).

  24. 24

    Hannan, L. A. & Edidin, M. Glycosylphosphatidylinositol-anchored protein after LDL-deprivation of MDCK cells. J. Cell Biol. 133, 1265–1276 (1996).

  25. 25

    Kundu, A., Avalos, R. T., Sanderson, C. M. & Nayak, D. P. Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J. Virol. 70, 6508–6515 (1996).

  26. 26

    Murata, M. et al. VIP21-caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339–10343 (1995).

  27. 27

    Lisanti, M. P., Sargiacomo, M., Graeve, L., Saltiel, A. & Rodriguez-Boulan, E. Polarized apical distribution of glycosyl-phosphatidylinositol-anchored proteins in a renal epithelial cell line. Proc. Natl Acad. Sci. USA 85, 9557–9561 (1989).

  28. 28

    Scheiffele, P., Peränen, J. & Simons, K. N-glycans as apical sorting signals in epithelial cells. Nature 378, 96–98 (1995).

  29. 29

    Fiedler, K., Parton, R. G., Kellner, R., Etzold, T. & Simons, K. VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO J. 13, 1729–1740 (1994).

  30. 30

    Matter, K. & Mellman, I. Mechanisms of cell polarity: Sorting and transport in epithelial cells. Curr. Opin. Cell. Biol. 6, 545–554 (1994).

  31. 31

    Ikonen, E., Tagaya, M., Ullrich, O., Montecucco, C. & Simons, K. Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell 81, 1–20 (1995).

  32. 32

    Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996).

  33. 33

    Müsch, A., Xu, H., Shield, D. & Rodriguez-Boulan, E. Transport of vesicular stomatitis virus G protein to the cell surface is signal mediated in polarized and nonpolarized cells. J. Cell Biol. 133, 543–558 (1996).

  34. 34

    Yoshimori, T., Keller, P., Roth, M. G. & Simons, K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J. Cell Biol. 133, 247–256 (1996).

  35. 35

    Danielsen, E. M. & van Deurs, B. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. J. Cell Biol. 131, 939–950 (1995).

  36. 36

    Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127, 1217–1232 (1994).

  37. 37

    Anderson, R. G. W., Kamen, B. A., Rothberg, K. G. & Lacey, S. W. Potocytosis: sequestration and transport of small molecules by caveolae. Science 255, 410–411 (1992).

  38. 38

    Anderson, H. A., Chen, Y. & Norkin, L. C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 7, 1825–1834 (1996).

  39. 39

    Deckert, M. et al. Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid-based domains, actin cytoskeleton, and protein kinases. J. Cell Biol. 133, 791–799 (1996).

  40. 40

    Mostov, K. E., Apodaca, G., Aroeti, B. & Okamoto, C. Plasma membrane protein sorting in polarized epithelial cells. J. Cell Biol. 116, 577–583 (1992).

  41. 41

    Simons, K. et al. The biogenesis of cell surface polarity in epithelial cells and neurons. Cold Spring Harbor Symp. Quant. Biol. LVII, 611–619 (1992).

  42. 42

    Pfeiffer, S. E., Warrington, A. E. & Bansal, R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3, 191–197 (1993).

  43. 43

    Peränen, J., Auvinen, P., Virta, H., Wepf, R. & Simons, K. Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J. Cell Biol. 135, 153–167 (1996).

  44. 44

    Anderson, R. G. W. Caveolae: where incoming and outgoing messengers meet. Proc. Natl Acad. Sci. USA 90, 10909–10913 (1993).

  45. 45

    Lisanti, M. P., Scherer, P. E., Tang, Z. L. & Sargiacomo, M. Caveolaer, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 4, 231–235 (1994).

  46. 46

    Parpal, S., Gustavsson, J. & Strålfors, P. Isolation of phosphooligosaccharide/phosphoinositol glycan from caveolae and cytosol of insulin-stimulated cells. J. Cell Biol. 131, 125–135 (1995).

  47. 47

    Li, S. et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J. Biol. Chem. 270, 15693–15701 (1995).

  48. 48

    Song, K. S. et al. Co-purification and direct interaciton of Ras with caveolin, an integral membrane protein of caveolae microdomains. J. Biol. Chem. 271, 9690–9697 (1996).

  49. 49

    Mineo, C., James, G. L., Smart, E. J. & Anderson, R. G. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. 217, 11930–11935 (1996).

  50. 50

    Hope, H. R. & Pike, L. J. Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol. Biol. Cell 7, 843–851 (1996).

  51. 51

    Linardic, C. M. & Hannun, Y. A. Identification of a distinct pool of sphingomyelin involved in the sphingomyelin cycle. J. Biol. Chem. 269, 23530–23537 (1994).

  52. 52

    Liu, P. & Anderson, R. G. W. Compartmentalized production of ceramide at the cell surface. J. Biol. Chem. 270, 27179–27185 (1995).

  53. 53

    Mayor, S., Rothberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994).

  54. 54

    Nykjaer, A. et al. Regions involved in binding of urokinase-type-1 inhibitor complex and pro-urokinase to the endocytic α2-macroglobulin receptor/low density lipoprotein receptor-related protein. J. Biol. Chem. 269, 25668–25676 (1994).

  55. 55

    Field, K. A., Holowka, D. & Baird, B. FcεRI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl Acad. Sci. USA 92, 9201–9205 (1995).

  56. 56

    Klein, U., Gimpl, G. & Fahrenholz, F. Alteration of myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34, 13784–13793 (1995).

  57. 57

    Mutoh, T., Tokuda, A., Miyadai, T., Hamaguchi, M. & Fujiki, N. Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc. Natl Acad. Sci. USA 92, 5087–5091 (1995).

  58. 58

    Bretscher, M. S. & Munro, S. Cholesterol and the Golgi apparatus. Science 261, 1280–1281 (1993).

  59. 59

    Rock, P., Allietta, M., Young, W. W. J, Thompson, T. E. & Tillack, T. W. Organization of glycosphingolipids in phosphatidylcholine bilayers: use of antibody molecules and Fab fragments as morphologic markers. Biochemistry 29, 8484–8490 (1990).

  60. 60

    Spiegel, S., Kassis, S., Wilchek, M. & Fishman, P. H. Direct visualization of redistribution and cappiang of fluorescent gangliosides on lymphocytes. J. Cell Biol. 99, 1575–1581 (1984).

  61. 61

    Boggs, J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim. Biophys. Acta 906, 353–404 (1987).

  62. 62

    Smaby, J. M., Momsen, M., Kulkarni, V. S. & Brown, R. E. Cholesterol-induced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains. Biochemistry 35, 5696–5704 (1996).

  63. 63

    Silvius, J. R. Cholesterol modulation of lipid intermixing in phospholipid and glycosphingolipid mixtures. Evaluation using fluorescent lipid probes and brominated lipid quenchers. Biochemistry 31, 3398–3408 (1992).

  64. 64

    Sankaram, M. B. & Thompson, T. E. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry 29, 10670–10675 (1990).

  65. 65

    Neuringer, L. J., Sears, B. & Jungalwala, F. B. Deuterium NMR studies of cerebroside-phospholipid bilayers. Biochim. Biophys. Acta 558, 325–329 (1979).

  66. 66

    Chong, P.-L. Evidence for regular distribution of sterols in liquid crystalline phosphatidylcholine bilayers. Proc. Natl Acad. Sci. USA 91, 10069–10073 (1994).

  67. 67

    Fiedler, K., Lafont, F., Parton, R. G. & Simons, K. Annexin XIIIb: A novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane. J. Cell Biol. 128, 1043–1053 (1995).

Download references


We thank E. Radeck for preparing the manuscript, and D. Brown, R. Brown, A. Kusumi, A. Helenius, G. van Meer, A. Watts, and members of K.S.'s laboratory for helpful criticism.

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.