Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A neuronal population code for sound localization

Abstract

The accuracy with which listeners can locate sounds is much greater than the spatial sensitivity of single neurons1,2,3. The broad spatial tuning of auditory neurons indicates that a code based on the responses of ensembles of neurons, a population code, must be used to determine the position of a sound in space. Here we show that the tuning of neurons to the most potent localization cue, the interaural time difference in low-frequency signals (<2 kHz; refs 4, 5), becomes sharper as the information ascends through the auditory system. We also show that this sharper tuning increases the efficiency of the population code, in the sense that fewer neurons are required to achieve a given acuity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sharpening of ITD tuning as the information ascends the auditory system.
Figure 2: Construction and performance of a population model for ITD sensitivity.
Figure 3: The point image representation of ITDs.

Similar content being viewed by others

References

  1. Mills, A. W. On the minimum audible angle. J. Acoust. Soc. Am. 65, 991–1000 (1958).

    Google Scholar 

  2. Kuwada, S., Batra, R. & Fitzpatrick, D. C. in Binaural and Spatial Hearing in Real and Virtual Environments(eds Gilkey, R. H. & Anderson, T. R.) 399–426 (Erlbaum, Mahwah, NJ, (1997)).

    Google Scholar 

  3. Brugge, J. F., Reale, R. A. & Hind, J. E. in Binaural and Spatial Hearing in Real and Virtual Environments(eds Gilkey, R. H. & Anderson, T. R.) 447–474 (Erlbaum, Mahwah, NJ, (1997)).

    Google Scholar 

  4. Blauert, J. Spatial Hearing: The Psychophysics of Human Sound Localization(MIT Press, Cambridge, MA, (1982)).

    Google Scholar 

  5. Wightman, F. L. & Kistler, D. J. The dominant role of low frequency interaural time differences in sound localization. J. Acoust. Soc. Am. 91, 1648–1661 (1992).

    Google Scholar 

  6. Yin, T. C. T. & Kuwada, S. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. J. Neurophysiol. 50, 1020–1042 (1983).

    Google Scholar 

  7. Li, L. & Kelly, J. B. Inhibitory influence of the dorsal nucleus of the lateral lemniscus on binaural responses in the rat's inferior colliculus. J. Neurosci. 12, 4530–4539 (1992).

    Google Scholar 

  8. Stern, R. M. & Trahiotis, C. in Auditory Physiology and Perception(eds Cazals, Y., Horner, K. & Demany) 547–554 (Pergamon, Oxford, (1992)).

    Book  Google Scholar 

  9. Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    Google Scholar 

  10. Georgopoulos, A. P., Kettner, R. E. & Schwartz, A. B. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci. 8, 2928–2937 (1988).

    Google Scholar 

  11. Stern, R. M. & Colburn, H. S. Theory of binaural interaction based on auditory-nerve data IV. A model for subjective lateral position. J. Acoust. Soc. Am. 64, 127–140 (1978).

    Google Scholar 

  12. Green, D. M. & Swets, J. A. in Signal Detection Theory and Psychophysics 1–455 (Wiley, New York, (1966)).

    Google Scholar 

  13. Hinton, G. E., McClelland, J. L. & Rummelhart, D. E. in Parallel Distributed Processing Vol. I(eds Rummelhart, D. E. & McClelland, J. L.) 77–109 (MIT Press, Cambridge, MA, (1986)).

    Google Scholar 

  14. Salinas, E. & Abbot, L. F. Vector reconstruction from firing rates. J. Comp. Neurosci. 1, 89–97 (1994).

    Google Scholar 

  15. Heffner, H. & Masterton, B. Hearing in Glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. J. Acoust. Soc. Am. 68, 1584–1599 (1980).

    Google Scholar 

  16. Hafter, E. R. & DeMaio, J. Difference thresholds for interaural delay. J. Acoust. Soc. Am. 57, 181–187 (1975).

    Google Scholar 

  17. Hubel, D. H. & Wiesel, T. N. Receptive fields. Binocular interactions and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Google Scholar 

  18. Capuano, U. & McIlwain, J. T. Reciprocity of receptive field images and point images in the superior colliculus of the cat. J. Comp. Neurol. 196, 13–23 (1981).

    Google Scholar 

  19. Rummelhart, D. E., Smolensky, P., Hinton, G. E. & McClelland, J. L. in Parallel Distributed Processing Vol. II(eds McClelland, J. L. & Rummelhart, D. E.) 77–109 (MIT Press, Cambridge, MA, (1986)).

    Google Scholar 

  20. Van Gisbergen, J. A. M., Van Opstal, A. J. & Tax, A. A. Collicular ensemble coding of saccades based on vector summation. Neuroscience 21, 541–555 (1987).

    Google Scholar 

  21. Lee, C., Rohrer, W. H. & Sparks, D. L. Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332, 357–360 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Theunissan, F. & Miller, J. P. Representation of sensory information in the cricket cercal sensory systems. II, Information theoretic calculation of system accuracy and optimal tuning curve widths of four primary interneurons. J. Neurophysiol. 66, 1690–1703 (1991).

    Google Scholar 

  23. Perrott, D. R. Concurrent minimum audible angle: a re-examination of the concept of auditory spatial acuity. J. Acoust. Soc. Am. 75, 1201–1206 (1984).

    Google Scholar 

  24. Trahiotis, C. & Bernstein, C. R. Detectability of interaural delays over select spectral regions: Effects of flanking noise. J. Acoust. Soc. Am. 87, 810–913 (1990).

    Google Scholar 

  25. Dye, R. H. The combination of interaural information across frequencies: Lateralization of the basis of interaural delay. J. Acoust. Soc. Am. 88, 2159–2170 (1990).

    Google Scholar 

  26. Heller, L. M. & Trahiotis, C. Extents of laterality and binaural interference effects. J. Acoust. Soc. Am. 99, 3632–3637 (1996).

    Google Scholar 

  27. Kuwada, S., Stanford, T. R. & Batra, R. Interaural phase sensitive units in the inferior colliculus of the unanesthetized rabbit. Effects of changing frequency. J. Neurophysiol. 57, 1338–1360 (1987).

    Google Scholar 

  28. Batra, R., Kuwada, S. & Stanford, T. R. Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. J. Neurophysiol. 61, 257–268 (1989).

    Google Scholar 

  29. Batra, R., Kuwada, S. & Fitzpatrick, D. C. Sensitivity to interaural temporal disparities of low and high frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J. Neurophysiol.(in the press).

  30. Stanford, T. R., Kuwada, S. & Batra, R. Acomparison of the interaural time sensitivity of neurons in the inferior colliculus and thalamus of the unanesthetized rabbit. J. Neurosci. 12, 3200–3216 (1992).

    Google Scholar 

Download references

Acknowledgements

We thank C. Trahiotis, L. Bernstein and L. Abbott for discussion, L. M. Seman for technical assistance, and T. Ju and R. Manfredi for computer programming. This work was supported by a grant from the Center for Deafness and Communicative Disorders, NIH, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas C. Fitzpatrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzpatrick, D., Batra, R., Stanford, T. et al. A neuronal population code for sound localization. Nature 388, 871–874 (1997). https://doi.org/10.1038/42246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42246

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing