Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:


Ultrahard polycrystalline diamond from graphite

A Correction to this article was published on 20 February 2003


Polycrystalline diamonds are harder and tougher than single-crystal diamonds and are therefore valuable for cutting and polishing other hard materials, but naturally occurring polycrystalline diamond is unusual and its production is slow. Here we describe the rapid synthesis of pure sintered polycrystalline diamond by direct conversion of graphite under static high pressure and temperature. Surprisingly, this synthesized diamond is ultrahard and so could be useful in the manufacture of scientific and industrial tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sintered polycrystalline diamond synthesized by direct conversion of graphite.

Similar content being viewed by others


  1. Kawai, N. & Endo, S. Rev. Sci. Instr. 41, 1178–1181 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Bundy F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H. Nature 176, 51–55 (1955).

    Article  ADS  CAS  Google Scholar 

  3. Sumiya, H., Toda, N. & Sato, S. Diamond Rel. Mater. 6, 1841–1846 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Brookes, C. A. & Brookes, E. J. Diamond Rel. Mater. 1, 13–17 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Bundy, F. P. J. Chem. Phys. 38, 631–643 (1963).

    Article  ADS  CAS  Google Scholar 

  6. Naka, S., Horii, K., Takeda, Y. & Hanawa, T. Nature 259, 38–39 (1976).

    Article  ADS  CAS  Google Scholar 

  7. DeCarli, P. S. Mater. Res. Soc. Symp. Proc. 383, 21–31 (1995).

    Article  CAS  Google Scholar 

  8. Yusa, H. et al. Appl. Phys. Lett. 72, 1843–1845 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Hall, H. T. Science 169, 868–869 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Krauss, A. R. et al. Diamond Rel. Mater. 10, 1952–1961 (2001).

    Article  ADS  CAS  Google Scholar 

  11. Katzman, H. & Libby, W. F. Science 172, 1132–1133 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Akaishi, M. & Yamaoka, S. Mater. Sci. Eng. A209, 54–59 (1996).

    Article  CAS  Google Scholar 

  13. De, S., Heaney, P. J., Vicenzi, E. P. & Wang, J. Earth Planet. Sci. Lett. 185, 315–330 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tetsuo Irifune.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irifune, T., Kurio, A., Sakamoto, S. et al. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing