Microscopic particles dispersed in a solvent — a colloidal dispersion — can be a useful model for phase transitions and crystal nucleation. A colloid that can be 'tuned' using an electric field is a valuable new tool.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.

References
Yethiraj, A. & van Blaaderen, A. Nature 421, 513–517 (2003).
Monovoukas, Y. & Gast, A. P. J. Colloid Interface Sci. 128, 533–548 (1989).
Hachisu, S. & Kobayashi, Y. J. Colloid Interface Sci. 46, 470–476 (1974).
de Kruif, C. G., Jansen, J. W. & Vrij, A. in Complex and Supramolecular Fluids (eds Safran, S. A. & Clark, N. A.) 315–343 (Wiley-Interscience, New York, 1987).
Antl, L., Goodwin, J., Ottewill, R. & Waters, J. Colloids Surf. 17, 67–78 (1986).
Pusey, P. N. & van Megen, W. in Complex and Supramolecular Fluids (eds Safran, S. A. & Clark, N. A.) 673–698 (Wiley-Interscience, New York, 1987).
Sperry, P. R. J. Colloid Interface Sci. 99, 97–108 (1984).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Russel, W. Tunable colloidal crystals. Nature 421, 490–491 (2003). https://doi.org/10.1038/421490a
Issue Date:
DOI: https://doi.org/10.1038/421490a
Further reading
-
Immobilization of colloidal crystals, formed by polymer-grafted silica in organic solvent, in physical gels
Colloid and Polymer Science (2006)