Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Anthropogenic aerosols

Indirect warming effect from dispersion forcing

Abstract

Anthropogenic aerosols enhance cloud reflectivity by increasing the number concentration of cloud droplets, leading to a cooling effect on climate that is referred to as the Twomey effect1,2. Here we show that anthropogenic aerosols exert an additional effect on cloud properties that is derived from changes in the spectral shape of the size distribution of cloud droplets in polluted air and acts to diminish this cooling. This finding could help to improve our understanding of the indirect aerosol effect and its treatment in climate modelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relation between the relative dispersion of cloud droplet size distribution, ɛ, and the number concentration of cloud droplets, N.

Similar content being viewed by others

References

  1. Twomey, S. Atmos. Environ. 8, 1251–1256 (1974).

    Article  ADS  Google Scholar 

  2. Charlson, R. J. et al. Science 255, 423–430 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Liu, Y. & Daum, P. H. Geophys. Res. Lett. 27, 1903–1906 (2000).

    Article  ADS  Google Scholar 

  4. Liu, Y. & Daum, P. H. Proc. 13th Int. Conf. On Clouds and Precipitation, Reno, USA 586–589 (2000).

    Google Scholar 

  5. Martin, G. M., Johnson, D. W. & Spice, A. J. Atmos. Sci. 51, 1823–1842 (1994).

    Article  ADS  Google Scholar 

  6. Ackerman, A. S. et al. J. Atmos. Sci. 57, 2684–2695 (2000).

    Article  ADS  Google Scholar 

  7. McFarquhar, G. M. & Heymsfield, A. J. J. Geophys. Res. D 106, 28675–28698 (2001).

    Article  ADS  Google Scholar 

  8. Yum, S. S. & Hudson, J. G. Atmos. Res. 57, 81–104 (2001).

    Article  Google Scholar 

  9. Hudson, J. G. & Yum, S. S. J. Atmos. Sci. 54, 2642–2654 (1997).

    Article  ADS  Google Scholar 

  10. Noonkester, V. R. J. Atmos. Sci. 41, 829–845 (1984).

    Article  ADS  Google Scholar 

  11. Hudson, J. G. & Yum, S. S. J. Atmos. Sci. 58, 915–926 (2001).

    Article  ADS  Google Scholar 

  12. Garrett, T. J. & Hobbs, P. V. J. Atmos. Sci. 52, 2977–2984 (1995).

    Article  ADS  Google Scholar 

  13. Hudson, J. G. & Li, H. J. Atmos. Sci. 52, 3031–3040 (1995).

    Article  ADS  Google Scholar 

  14. Noone, K. J. et al. J. Atmos. Sci. 57, 2729–2747 (2000).

    Article  ADS  Google Scholar 

  15. Noone, K. J. et al. J. Atmos. Sci. 57, 2748–2764 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangang Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Daum, P. Indirect warming effect from dispersion forcing. Nature 419, 580–581 (2002). https://doi.org/10.1038/419580a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/419580a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing