Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate

Abstract

Zeolite analogues containing transition metals are highly desirable for industrial processes. A generalized synthesis method has been developed and demonstrated to have the potential to generate many transition-metal-rich zeolite-type structures. The method has been used to make zeolite analogues based on cobalt phosphate with diverse chemical compositions and structure types, including some analogues never previously synthesized and some zeolite-like structures only previously known theoretically. The concentrations of transition-metal atoms in the frameworks can be controlled by varying the charge and geometry of the structure-directing amine molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Projected down the a-axis, an infinite sheet formed from the linking of fibrous chains in ACP-THO2.
Figure 2: The tetrahedral atom connectivity diagram showing the body-centred cubic arrangement of the double 4-ring units in ACP-1.
Figure 3: An infinite sheet formed by linking double saw (ss) chains along the crystallographic a-axis in ACP-2.
Figure 4: The 8-ring channels viewed down the c-axis in ACP-2.

References

  1. 1

    Breck, D. W. Zeolite Molecular Sieves(Wiley, New York, (1974)).

    Google Scholar 

  2. 2

    Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. & Flanigen, E. M. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 104, 1146–1147 (1982).

    CAS  Article  Google Scholar 

  3. 3

    Flanigen, E. M. in Introduction to Zeolite Science and Practice(eds van Bekkum, H., Flanigen, E. M. & Jansen, J. C.) 13–34 (Elsevier, New York, (1991)).

    Google Scholar 

  4. 4

    Flanigen, E. M., Patton, R. L. & Wilson, S. T. in Innovation in Zeolite Materials Science(eds Grober, P. J., Mortier, W. J., Vansant, E. F. & Schulz-Ekloff, G.) 13–27 (Elsevier, New York, (1988)).

    Google Scholar 

  5. 5

    Gier, T. E. & Stucky, G. D. Low-temperature synthesis of hydrated zinco(beryllo)-phosphate and arsenate molecular sieves. Nature 349, 508–510 (1991).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Harvey, G. & Meier, W. M. in Studies in Surface Science & Catalysis Vol. 49A (eds Jacobs, P. A. & VanSanten, R. A.) 411–420 (Elsevier, Amsterdam, (1989)).

    Google Scholar 

  7. 7

    Martensm, J. A. & Jacobs, P. A. in Advanced Zeolite Science and Applications(eds Jansen, J. C., Stocker, M., Karge, H. G. & Weitkamp, J.) 653–685 (Elsevier, Amsterdam, (1994)).

    Google Scholar 

  8. 8

    Meier, W. M., Olson, D. H. & Baerlocher, Ch. Atlas of Zeolite Structure Types(Elsevier, Boston, (1996)).

    Google Scholar 

  9. 9

    Bellussi, G. & Rigutto, M. S. in Advanced Zeolite Science and Applications(eds Jansen, J. C., Stocker, M., Karge, H. G. & Weitkamp, J.) 177–213 (Elsevier, Amsterdam, (1994)).

    Google Scholar 

  10. 10

    Bennett, J. M. & Marcus, B. K. in Innovation in Zeolite Materials Science(eds Grober, P. J., Mortier, W. J., Vansant, E. F. & Schulz-Ekloff, G.) 269–279 (Elsevier, New York, (1988)).

    Google Scholar 

  11. 11

    Wilson, S. T. & Flanigen, E. M. in Zeolite Synthesis(eds Occelli, M. L. & Robson, H. E.) 329–345 (ACS Symp. Ser. 398, Am. Chem. Soc., Washington DC, (1989)).

    Google Scholar 

  12. 12

    Canesson, L. & Tuel, A. Synthesis and characterization of CoAPO4-39 molecular sieves. Zeolites 18, 260–268 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Chen, J.-S., Jones, R. H., Natarajan, S., Hursthouse, M. B. & Thomas, J. M. Anovel open-framework cobalt phosphate containing a tetrahedrally coordinated cobalt(II) center: CoPO4·0.5C2H10N2. Angew. Chem. Int. Edn Engl. 33, 639–640 (1994).

    Article  Google Scholar 

  14. 14

    Soghomonian, V., Chen, Q., Haushalter, R. C., Zubieta, J. & O'Connor, C. J. An inorganic double helix: hydrothermal synthesis, structure, and magnetism of chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]·4H2O. Science 259, 1596–1599 (1993).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Gier, T. E., Bu, X., Wang, S.-L. & Stucky, G. D. Na2Zn3(CO3)4·3H2O, a microporous sodium zincocarbonate with a diamond-type tetrahedral-triangular topology. J. Am. Chem. Soc. 118, 3039–3040 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Feng, P., Bu, X. & Stucky, G. D. Designed assemblies in open framework materials synthesis: an interrupted sodalite and an expanded sodalite. Angew. Chem. Int. Edn Engl. 34, 1745–1747 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Harrison, W. T. A., Broach, R. W., Bedard, R. A., Gier, T. E., Bu, X. & Stucky, G. D. Synthesis and characterization of a new family of thermally stable open-framework zincophosphate/arsenate phases:M3Zn4O(XO4)3·nH2O (M = Na, K, Rb, Li, …; X = P, As; n = 3.5–6). Crystal structures of Rb3Zn4O(PO4)3·3.5H2O, K3Zn4O(AsO4)3·4H2O, and Na3Zn4O(PO4)3·6H2O. Chem. Mater. 8, 691–700 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Bu, X., Feng, P., Gier, T. E. & Stucky, G. D. Structural and chemical studies of zeolite ABW type phases: syntheses and characterizations of an ammonium zincophosphate and an ammonium beryllophosphate zeolite ABW structures. Zeolites(in the press).

  19. 19

    Bu, X., Feng, P. & Stucky, G. D. Two three-dimensional tetrahedral framework zinc phosphates with infinite Zn-O-Zn chains: H[Zn4(PO4)3]H2O and [Zn4(H2O)(PO4)3]NH(CH3)3. J. Solid State Chem. 125, 243–248 (1996).

    ADS  CAS  Article  Google Scholar 

  20. 20

    DeBord, J. R. D., Haushalter, R. C. & Zubieta, J. The first organically templated layered cobalt phosphates: hydrothermal syntheses and crystal structures of [H3N(CH2)3NH3]0.5[Co(PO4)]·0.5H2O and [H3N(CH2)4NH3]0.5[CO(PO4)]. J. Solid State Chem. 125, 270–273 (1996).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Feng, P., Bu, X., Tolbert, S. H. & Stucky, G. D. Syntheses and characterizations of chiral tetrahedral cobalt phosphates with zeolite ABW and related frameworks. J. Am. Chem. Soc. 119, 2497–2504 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Bu, X., Feng, B. & Stucky, G. D. Alamellar hydrated barium cobalt phosphate with a two dimensional array of Co-O-Co network: Ba(CoPO4)2·H2O. J. Solid State Chem.(in the press).

  23. 23

    Zones, S. I. & Santilli, D. S. in Proc. 9th Int. Zeolite Conf.(eds von Ballmoos, R., Higgins, J. B. & Treacy, M. M. J.) 171–179 (Butterworth-Heinemann, Boston, (1992)).

    Google Scholar 

  24. 24

    Monnier, A.et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261, 1299–1303 (1994).

    ADS  Article  Google Scholar 

  25. 25

    Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    ADS  Article  Google Scholar 

  26. 26

    Barrer, R. M., Baynham, J. W., Butltitude, F. W. & Meier, W. M. Hydrothermal chemistry of the silicates. Part VIII. Low temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues. J. Chem. Soc. 195–208 (1959).

  27. 27

    Cowley, A. R. & Chippindale, A. M. Synthesis and characterization of [C4NH10]+[CoGaP2O8], a CoGaPO analogue of the zeolite gismondine. J. Chem. Soc. Chem. Commun. 673–674 (1996).

  28. 28

    Kuehl, G. H. Synthetic phillipsite. Am. Mineral. 54, 1607–1612 (1969).

    CAS  Google Scholar 

  29. 29

    Smith, J. V. Topochemistry of zeolites and related materials. 1. Topology and geometry. Chem. Rev. 88, 149–182 (1988).

    CAS  Article  Google Scholar 

  30. 30

    Smith, J. V. & Rinaldi, F. Framework structures formed from parallel four- and eight-membered rings. Mineral. Mag. 33, 202–212 (1962).

    CAS  Google Scholar 

  31. 31

    Brunner, G. O. Quantitative zeolite topology can help to recognize erroneous structures and to plan syntheses. Zeolites 13, 88–91 (1993).

    CAS  Article  Google Scholar 

  32. 32

    Thomas, J. M. On the nature of the active site in a CoAPO-18 solid acid catalyst. Angew. Chem. Int. Edn Engl. 33, 1871–1873 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Pierce from the Department of Geological Sciences for help with the electron probe microanalysis. This work was supported in part by the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Galen D. Stucky.

Supplementary information

Supplementary Information

X-ray crystallography data - Tables 1-20 (DOC 140 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, P., Bu, X. & Stucky, G. Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate. Nature 388, 735–741 (1997). https://doi.org/10.1038/41937

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing