Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene therapy

Biological pacemaker created by gene transfer


The pacemaker cells of the heart initiate the heartbeat, sustain the circulation, and dictate the rate and rhythm of cardiac contraction1. Circulatory collapse ensues when these specialized cells are damaged by disease, a situation that currently necessitates the implantation of an electronic pacemaker2. Here we report the use of viral gene transfer to convert quiescent heart-muscle cells into pacemaker cells, and the successful generation of spontaneous, rhythmic electrical activity in the ventricle in vivo. Our results indicate that genetically engineered pacemakers could be developed as a possible alternative to implantable electronic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Suppression of Kir2.1 channels unleashes pacemaker activity.


  1. 1

    Brooks, C. M. & Lu, H.-H The Sinoatrial Pacemaker of the Heart (Thomas, Springfield, Illinois, 1972).

    Google Scholar 

  2. 2

    Kusumoto, F. M. & Goldschlager, N. N. Engl. J. Med. 334, 89–97 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Wobus, A. M., Rohwedel, J., Maltsev, V. & Hescheler, J. Ann. NY Acad. Sci. 752, 460–469 (1995).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Kubo, Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. Nature 362, 127–333 (1993).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Herskowitz, I. Nature 329, 219–222 (1987).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Slesinger, P. A. et al. Neuron 16, 321–331 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Irisawa, H., Brown, H. F. & Giles, W. Physiol. Rev. 73, 197–227 (1993).

    CAS  Article  Google Scholar 

  8. 8

    Santoro, B. & Tibbs, G. R. Ann. NY Acad. Sci. 868, 741–764 (1999).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Imoto, Y., Ehara, T. & Matsuura, H. Am. J. Physiol. 252, 325–333 (1987).

    Google Scholar 

  10. 10

    Hirano, Y. & Hiraoka, M. J. Physiol. (Lond.) 395, 455–472 (1988).

    CAS  Article  Google Scholar 

  11. 11

    Rodriguez-Contreras, A., Nonner, W. & Yamoah, E. N. J. Physiol. (Lond.) 538, 729–745 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Campbell, D. L., Giles, W. R. & Shibata, E. F. J. Physiol. (Lond.) 403, 239–266 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Brown, H. F., Kimura, J., Noble, D., Noble, S. J. & Taupignon, A. Proc. R. Soc. Lond. B 222, 329–347 (1984).

    ADS  CAS  Article  Google Scholar 

Download references

Author information



Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miake, J., Marbán, E. & Nuss, H. Biological pacemaker created by gene transfer. Nature 419, 132–133 (2002).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing