The antiquity of RNA-based evolution

Abstract

All life that is known to exist on Earth today and all life for which there is evidence in the geological record seems to be of the same form — one based on DNA genomes and protein enzymes. Yet there are strong reasons to conclude that DNA- and protein-based life was preceded by a simpler life form based primarily on RNA. This earlier era is referred to as the 'RNA world', during which the genetic information resided in the sequence of RNA molecules and the phenotype derived from the catalytic properties of RNA.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2: Prebiotic clutter surrounding RNA.
Figure 3: Candidate precursors to RNA during the early history of life on Earth.
Figure 4: Successive phases in the in vitro evolution of an RNA polymerase ribozyme.
Figure 5: Hypothetical pathway for RNA-catalysed synthesis of RNA.
Figure 6: Hypothetical pathway for RNA-catalysed protein synthesis.

References

  1. 1

    Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

  2. 2

    Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–338 (2000).

  3. 3

    Yusupov, M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

  4. 4

    Unrau, P. J. & Bartel, D. P. RNA-catalysed nucleotide synthesis. Nature 395, 260–263 (1998).

  5. 5

    Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E. & Bartel, D. P. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325 (2001).

  6. 6

    Lee, N., Bessho, Y., Wei, K., Szostak, J. W. & Suga, H. Ribozyme-catalyzed tRNA aminoacylation. Nature Struct. Biol. 7, 28–33 (2000).

  7. 7

    Zhang, B. & Cech, T. R. Peptide bond formation by in vitro selected ribozymes. Nature 390, 96–100 (1997).

  8. 8

    von Kiedrowski, G. A self-replicating hexadeoxynucleotide. Angew. Chem. 25, 932–935 (1986).

  9. 9

    Gilbert, W. The RNA world. Nature 319, 618 (1986).

  10. 10

    Joyce, G. F. RNA evolution and the origins of life. Nature 338, 217–224 (1989).

  11. 11

    Ferris, J. P., Sanchez, R. A. & Orgel, L. E. Studies in prebiotic synthesis III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J. Mol. Biol. 33, 693–704 (1968).

  12. 12

    Robertson, M. P. & Miller, S. L. An efficient prebiotic synthesis of cytosine and uracil. Nature 375, 772–774 (1995).

  13. 13

    Lohrmann, R. & Orgel, L. E. Prebiotic synthesis: phosphorylation in aqueous solution. Science 161, 64–66 (1968).

  14. 14

    Fuller, W. D., Sanchez, R. A. & Orgel, L. E. Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. J. Mol. Biol. 67, 25–33 (1972).

  15. 15

    Müller, D. et al. Chemie von α-Aminonitrilen. Aldomerisierung von Glykolaldehydphosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac.-Allose-2,4,6-triphosphat und rac.-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte. Helv. Chim. Acta 73, 1410–1468 (1990).

  16. 16

    Krishnamurthy, R., Pitsch, S. & Arrhenius, G. Mineral induced formation of pentose-2,4-bisphosphates. Origins Life Evol. Biosph. 29, 139–152 (1999).

  17. 17

    Ferris, J. P. & Ertem, G. Oligomerization of ribonucleotides on montmorillonite: reaction of the 5′-phosphorimidazolide of adenosine. Science 257, 1387–1389 (1992).

  18. 18

    Eschenmoser, A. Chemical etiology of nucleic acid structure. Science 284, 2118–2124 (1999).

  19. 19

    Schöning, K.-U. et al. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′→2′) oligonucleotide system. Science 290, 1347–1351 (2000).

  20. 20

    Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

  21. 21

    Nelson, K. E., Levy, M. & Miller, S. L. Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc. Natl Acad. Sci. USA 97, 3868–3871 (2000).

  22. 22

    Joyce, G. F. et al. Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310, 602–604 (1984).

  23. 23

    Schmidt, J. G., Nielsen, P. E. & Orgel, L. E. Enantiomeric cross-inhibition in the synthesis of oligonucleotides on a nonchiral template. J. Am. Chem. Soc. 119, 1494–1495 (1997).

  24. 24

    Eriksson, M. et al. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution. New J. Chem. 22, 1055–1059 (1998).

  25. 25

    Spach, G. Chiral versus chemical evolutions and the appearance of life. Origins Life Evol. Biosph. 14, 433–437 (1984).

  26. 26

    Joyce, G. F., Schwartz, A. W., Miller, S. L. & Orgel, L. E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl Acad. Sci. USA 84, 4398–4402 (1987).

  27. 27

    Schneider, K. C. & Benner, S. A. Oligonucleotides containing flexible nucleoside analogues. J. Am. Chem. Soc. 112, 453–455 (1990).

  28. 28

    Merle, Y., Bonneil, E., Merle, L., Sagi, J. & Szemzo, A. Acyclic oligonucleotide analogues. Int. J. Biol. Macromol. 17, 239–246 (1995).

  29. 29

    Chaput, J. C. & Switzer, C. Nonenzymatic oligomerization on templates containing phosphoester-linked acyclic glycerol nucleic acid analogues. J. Mol. Evol. 51, 464–470 (2000).

  30. 30

    Pitsch, S., Wendeborn, S., Jaun, B. & Eschenmoser, A. Why pentose- and not hexose nucleic acids? Pyranosyl-RNA ('p-RNA'). Helv. Chim. Acta 76, 2161–2183 (1993).

  31. 31

    Pitsch, S. et al. Pyranosyl-RNA ('p-RNA'): base-pairing selectivity and potential to replicate. Helv. Chim. Acta 78, 1621–1635 (1995).

  32. 32

    Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).

  33. 33

    Tjivikua, T., Ballester, P. & Rebek, J. Jr A self-replicating system. J. Am. Chem. Soc. 112, 1249–1250 (1990).

  34. 34

    Cairns-Smith, A. G. The origin of life and the nature of the primitive gene. J. Theor. Biol. 10, 53–88 (1966).

  35. 35

    Cairns-Smith, A. G. & Davies, C. J. in Encyclopaedia of Ignorance (eds Duncan, R. & Weston-Smith, M.) 391–403 (Pergamon, Oxford, 1977).

  36. 36

    James, K. D. & Ellington, A. D. The fidelity of template-directed oligonucleotide ligation and the inevitability of polymerase function. Origins Life Evol. Biosph. 29, 375–390 (1999).

  37. 37

    Kirby, A. J. & Younas, M. The reactivity of phosphate esters. Diester hydrolysis. J. Chem. Soc. B 510–513 (1970).

  38. 38

    Admiraal, S. J. & Herschlag, D. Catalysis of phosphoryl transfer from ATP by amine nucleophiles. J. Am. Chem. Soc. 121, 5837–5845 (1999).

  39. 39

    Rohatgi, R., Bartel, D. P. & Szostak, J. W. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J. Am. Chem. Soc. 118, 3332–3339 (1996).

  40. 40

    Li, Y. & Breaker, R. R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372 (1999).

  41. 41

    Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

  42. 42

    Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

  43. 43

    Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

  44. 44

    Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).

  45. 45

    Ekland, E. H., Szostak, J. W. & Bartel, D. P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269, 364–370 (1995).

  46. 46

    Ekland, E. H. & Bartel, D. P. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382, 373–376 (1996).

  47. 47

    Jaeger, L., Wright, M. C. & Joyce, G. F. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain. Proc. Natl Acad. Sci. USA 96, 14712–14717 (1999).

  48. 48

    McGinness, K. E. & Joyce, G. F. RNA-catalyzed RNA ligation on an external RNA template. Chem. Biol. 9, 297–307 (2002).

  49. 49

    Robertson, M. P. & Ellington, A. D. In vitro selection of an allosteric ribozyme that transduces analytes into amplicons. Nature Biotechnol. 17, 62–66 (1999).

  50. 50

    Rogers, J. & Joyce, G. F. The effect of cytidine on the structure and function of an RNA ligase ribozyme. RNA 7, 395–404 (2001).

  51. 51

    Landweber, L. F. & Pokrovskaya, I. D. Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: the spandrels of RNA evolution. Proc. Natl. Acad. Sci. USA 96, 173–178 (1999).

  52. 52

    Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

  53. 53

    Orgel, L. E. & Lohrmann, R. Prebiotic chemistry and nucleic acid replication. Acc. Chem. Res. 7, 368–377 (1974).

  54. 54

    Lorsch, J. & Szostak, J. W. In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature 371, 31–36 (1994).

  55. 55

    Huang, F. & Yarus, M. Versatile 5′ phosphoryl coupling of small and large molecules to an RNA. Proc. Natl Acad. Sci. USA 94, 8965–8969 (1997).

  56. 56

    Hager, A. J. & Szostak, J. W. Isolation of novel ribozymes that ligate AMP-activated RNA substrates. Chem. Biol. 4, 607–617 (1997).

  57. 57

    White, H. B. III Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101–104 (1976).

  58. 58

    Lohse, P. A. & Szostak, J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature 381, 442–444 (1996).

  59. 59

    Jenne, A. & Famulok, M. A novel ribozyme with ester transferase activity. Chem. Biol. 5, 23–34 (1998).

  60. 60

    Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Nature 374, 777–782 (1995).

  61. 61

    Wecker, M., Smith, D. & Gold, L. In vitro selection of a novel catalytic RNA: characterization of a sulfur alkylation reaction and interaction with a small peptide. RNA 2, 982–994 (1996).

  62. 62

    Tarasow, T. M., Tarasow, S. L. & Eaton, B. E. RNA-catalysed carbon–carbon bond formation. Nature 389, 54–57 (1997).

  63. 63

    Seelig, B. & Jäschke, A. A small catalytic RNA motif with Diels-Alderase activity. Chem. Biol. 6, 167–176 (1999).

  64. 64

    Wiegand, T. W., Janssen, R. C. & Eaton, B. E. Selection of RNA amide synthases. Chem. Biol. 4, 675–683 (1997).

  65. 65

    Sengle, G., Eisenführ, A., Arora, P. S., Nowick, J. S. & Famulok, M. Novel RNA catalysts for the Michael reaction. Chem. Biol. 8, 459–473 (2001).

  66. 66

    Freeland, S. J., Knight, R. D. & Landweber, L. F. Do proteins predate DNA? Science 286, 690–692 (1999).

  67. 67

    Stubbe, J., Ge, J. & Yee, C. S. The evolution of ribonucleotide reduction revisited. Trends Biochem. Sci. 26, 93–99 (2001).

  68. 68

    Benner, S. A., Ellington, A. D. & Tauer, A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl Acad. Sci. USA 86, 7054–7058 (1989).

  69. 69

    Schön, A. et al. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322, 281–284 (1986).

  70. 70

    Luisi, P. L. About various definitions of life. Origins Life Evol. Biosph. 28, 613–622 (1998).

  71. 71

    Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

  72. 72

    Gibson, T. J. & Lamond, A. I. Metabolic complexity in the RNA world and implications for the origin of protein synthesis. J. Mol. Evol. 30, 7–15 (1990).

  73. 73

    Dobson, C. M., Ellison, G. B., Tuck, A. F. & Vaida, V. V. Atmospheric aerosols as prebiotic chemical reactors. Proc. Natl Acad. Sci. USA 97, 11864–11868 (2000).

  74. 74

    Brack, A. & Orgel, L. E. β structures of alternating polypeptides and their possible prebiotic significance. Nature 256, 383–387 (1975).

  75. 75

    Ourisson, G. & Nakatani, Y. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem. Biol. 1, 11–23 (1994).

  76. 76

    Kumar, R. K. & Yarus, M. RNA-catalyzed amino acid activation. Biochemistry 40, 6998–7004 (2001).

  77. 77

    Illangasekare, M., Sanchez, G., Nickles, T. & Yarus, M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267, 643–647 (1995).

  78. 78

    Illangasekare, M. & Yarus, M. Small-molecule-substrate interactions with a self-aminoacylating ribozyme. J. Mol. Biol. 268, 631–639 (1997).

  79. 79

    Saito, H., Kourouklis, D. & Suga, H. An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J. 20, 1797–1806 (2001).

  80. 80

    Weber, A. L. & Orgel, L. E. Poly(U)-directed peptide bond formation from the 2′(3′)-glycyl esters of adenosine derivatives. J. Mol. Evol. 16, 1–10 (1980).

  81. 81

    Barta, A. et al. Mechanism of ribosomal peptide bond formation. Science 291, 203a (2001) (published online at http://www.sciencemag.org/cgi/content/full/291/5502/203a).

  82. 82

    Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

  83. 83

    Zhang, B. & Cech, T. R. Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chem. Biol. 5, 539–553 (1998).

  84. 84

    Schimmel, P. & Henderson, B. Possible role of aminoacyl-RNA complexes in noncoded peptide synthesis and origin of coded synthesis. Proc. Natl Acad. Sci. USA 91, 11283–11286 (1994).

  85. 85

    Izatt, R. M., Hansen, L. D., Rytting, J. H. & Christensen, J. J. Proton ionization from adenosine. J. Am. Chem. Soc. 87, 2760–2761 (1965).

  86. 86

    Sugimoto, N., Tomka, M., Kierzek, R., Bevilacqua, P. C. & Turner, D. H. Effects of substrate structure on the kinetics of circle opening reactions of the self-splicing intervening sequence from Tetrahymena thermophila: evidence for substrate and Mg2+ binding interactions. Nucleic Acids Res. 17, 355–371 (1989).

  87. 87

    Orgel, L. E. The origin of polynucleotide-directed protein synthesis. J. Mol. Evol. 29, 465–474 (1989).

  88. 88

    Weiner, A. M. & Maizels, N. 3′ terminal tRNA-like structures tag genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc. Natl Acad. Sci. USA 84, 7383–7387 (1987).

  89. 89

    Wong, J.-T. Origin of genetically encoded protein synthesis: a model based on selection for RNA peptidation. Origins Life Evol. Biosph. 21, 165–176 (1991).

  90. 90

    Schimmel, P. & Ribas de Pouplana, L. Transfer RNA: from minihelix to genetic code. Cell 81, 983–986 (1995).

  91. 91

    Roth, A. & Breaker, R. R. An amino acid as a cofactor for a catalytic polynucleotide. Proc. Natl Acad. Sci. USA 95, 6027–6031 (1998).

  92. 92

    Joyce, G. F. Nucleic acid enzymes: playing with a fuller deck. Proc. Natl Acad. Sci. USA 95, 5845–5847 (1998).

  93. 93

    Fontana, W. & Schuster, P. Continuity in evolution: on the nature of transitions. Science 280, 1451–1455 (1998).

  94. 94

    Schultes, E. A. & Bartel, D. P. One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289, 448–452 (2000).

  95. 95

    Joyce, G. F. The rise and fall of the RNA world. New Biol. 3, 399–407 (1991).

Download references

Acknowledgements

I thank T. Cech, A. Eschenmoser, R. Krishnamurthy, L. Orgel, N. Paul, P. Schimmel and W. Shih for helpful comments on the manuscript. I acknowledge funding from the National Aeronautics and Space Administration and the Skaggs Institute for Chemical Biology.

Author information

Correspondence to Gerald F. Joyce.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.