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The spiral arrangements of leaves on a
stem, and the number of petals, sepals
and spirals in flower heads during the

development of most plants, represent 
successive numbers in the famous series 
discovered in the thirteenth century by the
Italian mathematician Fibonacci, in which
each number is the sum of the previous two
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55...). Seeds on 
the heads of sunflowers, for example, are
arranged in two sets of spiral rows, one 
curving to the left and the other to the right.
Thus, if 34 seed rows curve clockwise, there
will be either 21 or 55 anticlockwise spirals
on a sunflower head. Pine cones (see picture)
are found both in the ‘dexter’ (righty) form,
in which most spirals run clockwise, and 
in the ‘sinister’ (lefty) form, in which anti-
clockwise spirals predominate. 

This set of phenomena is called phyllo-
taxis, from the Greek (phyllon — leaf; taxis —
order). Phyllotactic patterns have been
described for centuries, but the mechanisms
that initiate these patterns remain undefined.
The geometric arrangement follows from the
regular packing of leaf primordia on a stem as
the diameter of the stem slowly increases. But
how does this pattern of growth conform to
the numbers in Fibonacci’s series?

The meristematic tissue, an undifferenti-
ated mass of cells at the tip of a plant shoot, 
has near its boundary a region called the apical
ring, where new plant organs are formed
through extensive cell division in a structure
called the primordium. Thus, phyllotactic
patterns are thought to result from regulated
differentiation of the primordia from cells
originally derived from the meristematic 

tissue of the vegetative or floral shoot. So in
flower development, it seems that the floral tip
produces seeds in spiral arrays as a result of
spiral growth combined with primordia mov-
ing radially away from the centre of the apex. 

Two main hypotheses have been proposed
to explain the generation and maintenance 
of phyllotactic patterns. In the famous ‘field’
model, the position of the primordium is
determined by undulating inhibitory fields,
presumably composed of biochemicals, that
emanate from the existing primordium and
the apical meristem. The second model sug-
gests that tissue mechanics and biophysical
forces combine to promote morphogenesis
in predictable ways. Yet neither of these 
models produces testable predictions, and
they both lack convincing experimental 
support. Furthermore, they explain only the
propagation of established patterns, not how
phyllotaxy actually originates.

The connection between mathematical
number series and pattern development
remains to be described in biological terms. 
I would like to propose another, simpler 
theoretical model, based on cellular differen-
tiation, to explain the de novo generation 
of phyllotaxy. Imagine an asymmetric cell 
division that gives rise to a mature cell that is
competent to divide, as well as a juvenile cell
that must first grow for one more length of
the cell cycle to mature before it begins its
division cycle. Remarkably, such an asym-
metric cell division will indeed produce cell
numbers in each generation that match the
Fibonacci series. 

This outcome is analogous to the original
mathematical challenge posed by Fibonacci
for his high-school students, to calculate 
the numbers of breeding rabbits when the

newborns have to grow before they can begin
breeding. Another striking analogy concerns
stem cells — undifferentiated cells that divide
to renew themselves as well as to give rise to
more specialized cell types. Many cases exist
in biology in which one daughter cell main-
tains the stem-cell characteristic while the
other daughter is differentiated. For example,
in early divisions of embryos of the nematode
Caenorhabditis elegans, the times taken by
different daughter cells to divide are very 
different. I suspect that a similar cell-division
pattern may underlie the development of
mathematical patterns in plants. 

Intuitively, the stem-cell proposal pre-
dicts that floral meristems growing spirally
and dividing asymmetrically will produce
dexter and sinister arrangements in equal
proportion, an outcome that is not predicted
in such a straightforward way by the other
models discussed above. Of 37 cones picked
from a pine tree, I found that 20 cones were
dexter and 17 were sinister, which is consis-
tent with the idea that the direction of
asymmetry is random. Likewise, six other
trees all produced both kinds of cone. 
Randomness is expected in binary systems
in which no bias exists, such as the tossing 
of a coin or the development of a crusher 
or clipper claw on the left or right side in
lobsters. The currently prevailing models
are unsatisfactory for answering such a 
fundamental question in biology. 

At the very least, the stem-cell model is
attractive in its simplicity compared with
other models, and may provide a new
framework for explaining existing results as
well as becoming a concept that will guide
research. At present, the challenge is to 
correlate asymmetric patterns of cell division
with the generation of Fibonacci patterns,
and to design tests to distinguish between
these models. Perhaps the most useful
approach may be to study mutants with
altered developmental patterns. n
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Plant
mathematics
Asymmetric cell division offers a
possible explanation of the spiral
patterns seen in many plants.

Something sinister: the pine cone on the left is in the ‘lefty’ form; that on the right is dexter, or ‘righty’.
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