Quantum control of energy flow in light harvesting

Abstract

Coherent light sources have been widely used in control schemes that exploit quantum interference effects to direct the outcome of photochemical processes. The adaptive shaping of laser pulses is a particularly powerful tool in this context: experimental output as feedback in an iterative learning loop refines the applied laser field to render it best suited to constraints set by the experimenter1,2. This approach has been experimentally implemented to control a variety of processes3,4,5,6,7,8,9, but the extent to which coherent excitation can also be used to direct the dynamics of complex molecular systems in a condensed-phase environment remains unclear. Here we report feedback-optimized coherent control over the energy-flow pathways in the light-harvesting antenna complex LH2 from Rhodopseudomonas acidophila, a photosynthetic purple bacterium. We show that phases imprinted by the light field mediate the branching ratio of energy transfer between intra- and intermolecular channels in the complex's donor–acceptor system. This result illustrates that molecular complexity need not prevent coherent control, which can thus be extended to probe and affect biological functions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Properties of the LH2 antenna complex of R. acidophila, a, Geometrical arrangement of the carotenoid (‘Car’) and bchl molecules (data taken from the Protein Data Bank; identification code 1kzu).
Figure 2: Optical set-up.
Figure 3: Optimization results.
Figure 4: Transient absorption kinetics.
Figure 5: Evidence of coherence in the control mechanism for the light-harvesting function.

References

  1. 1

    Judson, R. S. & Rabitz, H. Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500–1503 (1992)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Rabitz, H., deVivie-Riedle, R., Motzkus, M. & Kompa, K.-L. Whither the future of controlling quantum phenomena? Science 288, 824–828 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Assion, A. et al. Control of chemical reactions by feedback-optimized pulse-shaped fs laser pulses. Science 282, 919–922 (1998)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Levis, R. J., Menkir, G. M. & Rabitz, H. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292, 709–713 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Zeidler, D. et al. Optimal control of ground-state dynamics in polymers. J. Chem. Phys. 116, 5231–5235 (2002)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bardeen, C. J. et al. Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280, 151–158 (1997)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Brixner, T., Damrauer, N. H., Niklaus, P. & Gerber, G. Photoselective adaptive femtosecond quantum control in the liquid phase. Nature 414, 57–60 (2001)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Weinacht, T. C., Ahn, J. & Bucksbaum, P. H. Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Bartels, R. et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164–166 (2000)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Pullerits, T. & Sundström, V. Photosynthetic light-harvesting pigment-protein complexes: Toward understanding how and why. Acc. Chem. Res. 29, 381–389 (1996)

    CAS  Article  Google Scholar 

  11. 11

    Zinth, W., Arlt, T. & Wachtveitl, J. The primary processes of bacterial photosynthesis—ultrafast reactions for the optimum use of light energy. Ber. Bunsenges. Phys. Chem. 100, 1962–1966 (1996)

    CAS  Article  Google Scholar 

  12. 12

    Ritz, T., Park, S. & Schulten, K. Kinetics of excitation migration and trapping in the photosynthetic unit of purple bacteria. J. Phys. Chem. B 105, 8259–8267 (2001)

    CAS  Article  Google Scholar 

  13. 13

    Mc Dermott, G. et al. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Frank, H. A. et al. On the photophysics and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Pure Appl. Chem. 69, 2117–2124 (1997)

    CAS  Article  Google Scholar 

  15. 15

    Macpherson, A., Arellano, J. B., Fraser, N. J., Cogdell, R. J. & Gillbro, T. Efficient energy transfer from the carotenoid S2 state in a photosynthetic light-harvesting complex. Biophys. J. 80, 923–930 (2001)

    CAS  Article  Google Scholar 

  16. 16

    Sundström, V., Pullerits, T. & van Grondelle, R. Photosynthetic light harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103, 2327–2346 (1999)

    Article  Google Scholar 

  17. 17

    Krueger, B. P., Scholes, G. D., Jimenez, R. & Fleming, G. R. Electronic excitation energy transfer from carotenoid to bacteriochlorophyll in the purple bacterium Rhodopseudomonas acidophila. J. Phys. Chem. B 102, 2284–2292 (1998)

    CAS  Article  Google Scholar 

  18. 18

    Zeidler, D., Hornung, T., Proch, D. & Motzkus, M. Adaptive compression of pulses from a non-collinear OPA to < 16 fs by feedback controlled pulse shaping. Appl. Phys. B 70(Suppl.), S125 (2000)

    ADS  Article  Google Scholar 

  19. 19

    Wilhelm, T., Piel, J. & Riedle, E. Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Opt. Lett. 22, 1494–1496 (1997)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Zeidler, D., Frey, S., Kompa, K.-L. & Motzkus, M. Evolutionary algorithms and their application to optimal control studies. Phys. Rev. A 64, 023420-1–023420-13 (2000)

    ADS  Google Scholar 

  21. 21

    Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Wefers, M. M. & Nelson, K. A. Space-time profiles of shaped ultrafast optical waveforms. IEEE J. Quant. Electr. 32, 161–172 (1996)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Amstrup, B., Carson, R. J., Matro, A. & Rice, S. A. The use of pulse shaping to control the photodissociation of a diatomic molecule: Preventing the best from being the enemy of the good. J. Phys. Chem. 95, 8019–8027 (1991)

    CAS  Article  Google Scholar 

  24. 24

    Hornung, T., Motzkus, M. & de Vivie-Riedle, R. Teaching OCT to distil robust pulses even under experimental constraints. Phys. Rev. A 65, 021403(R)-1–021403(R)-4 (2002)

    ADS  Article  Google Scholar 

  25. 25

    Warren, W. S. & Zewail, A. H. Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications. J. Chem. Phys. 78, 2279–2297 (1983)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Hornung, T., Meier, R. & Motzkus, M. Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain. Chem. Phys. Lett. 326, 445–453 (2000)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Trinkunas, G., Herek, J. L., Polivka, T., Sundström, V. & Pullerits, T. Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2. Phys. Rev. Lett. 86, 4167–4170 (2001)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support and encouragement from K.-L. Kompa and V. Sundström. We thank A. Gardiner for help with sample preparation, T. Hornung for discussions and M. Mathys for help with experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcus Motzkus.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herek, J., Wohlleben, W., Cogdell, R. et al. Quantum control of energy flow in light harvesting. Nature 417, 533–535 (2002). https://doi.org/10.1038/417533a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing