Abstract
Recent advances in the precise control of ultracold atomic systems have led to the realisation of Bose–Einstein condensates (BECs) and degenerate Fermi gases. An important challenge is to extend this level of control to more complicated molecular systems. One route for producing ultracold molecules is to form them from the atoms in a BEC. For example, a two-photon stimulated Raman transition in a 87Rb BEC has been used to produce 87Rb2 molecules in a single rotational-vibrational state1, and ultracold molecules have also been formed2 through photoassociation of a sodium BEC. Although the coherence properties of such systems have not hitherto been probed, the prospect of creating a superposition of atomic and molecular condensates has initiated much theoretical work3,4,5,6,7. Here we make use of a time-varying magnetic field near a Feshbach resonance8,9,10,11,12 to produce coherent coupling between atoms and molecules in a 85Rb BEC. A mixture of atomic and molecular states is created and probed by sudden changes in the magnetic field, which lead to oscillations in the number of atoms that remain in the condensate. The oscillation frequency, measured over a large range of magnetic fields, is in excellent agreement with the theoretical molecular binding energy, indicating that we have created a quantum superposition of atoms and diatomic molecules—two chemically different species.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Tunable spinful matter wave valve
Scientific Reports Open Access 17 June 2019
-
Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity
Scientific Reports Open Access 12 July 2016
-
Coherence loss of partially mode-locked fibre laser
Scientific Reports Open Access 29 April 2016
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Wynar, R. H., Freeland, R. S., Han, D. J., Ryu, C. & Heinzen, D. J. Molecules in a Bose-Einstein condensate. Science 287, 1016–1019 (2000)
McKenzie, C. et al. Photoassociation of sodium in a Bose-Einstein condensate. Phys. Rev. Lett. 88, 120403-1–120403-4 (2001)
Anglin, J. R. & Vardi, A. Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory. Phys. Rev. A 64, 013605-1–013605-9 (2001)
Cusack, B. J., Alexander, T. J., Ostrovskaya, E. A. & Kivshar, Y. S. Existence and stability of coupled atomic-molecular Bose-Einstein condensates. Phys. Rev. A 65, 013609-1–013609-4 (2001)
Calsamiglia, J., Mackie, M. & Suominen, K. Superposition of macroscopic numbers of atoms and molecules. Phys. Rev. Lett. 87, 160403-1–160403-4 (2001)
Drummond, P. D., Kheruntsyan, K. V., Heinzen, D. J. & Wynar, R. H. Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate. Preprint cond-mat/0110578 at 〈http://xxx.lanl.gov〉 (2002).
Heinzen, D. J., Wynar, R., Drummond, P. D. & Kheruntsyan, K. V. Superchemistry: dynamics of coupled atomic and molecular Bose-Einstein condensates. Phys. Rev. Lett. 84, 5029–5033 (2000)
Tiesinga, E., Moerdijk, A., Verhaar, B. J. & Stoof, H. T. C. Conditions for Bose-Einstein condensation in magnetically trapped atomic cesium. Phys. Rev. A 46, R1167–R1170 (1992)
Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114–4122 (1993)
Moerdijk, A. J., Verhaar, B. J. & Axelson, A. Resonances in ultracold collisions of 6Li, 7Li, and 23Na. Phys. Rev. A 51, 4852–4861 (1995)
van Abeelen, F. A. & Verhaar, B. J. Time-dependent Feshbach resonance scattering and anomalous decay of a Na Bose-Einstein condensate. Phys. Rev. Lett. 83, 1550–1553 (1999)
Mies, F. H., Tiesinga, E. & Julienne, P. S. Manipulation of Feshbach resonances in ultracold atomic collisions using time-dependent magnetic fields. Phys. Rev. A 61, 022721-1–022721-17 (2000)
van Abeelen, F. A., Heinzen, D. J. & Verhaar, B. J. Photoassociation as a probe of Feshbach resonances in cold-atom scattering. Phys. Rev. A 57, R4102–R4105 (1998)
Timmermans, E., Tommasini, P., Hussein, M. & Kerman, A. Feshbach resonances in atomic Bose-Einstein condensates. Phys. Rep. 315, 199–230 (1999)
Timmermans, E., Tommasini, P., Côté, R., Hussein, M. & Kerman, A. Rarified liquid properties of hybrid atomic-molecular Bose-Einstein condensates. Phys. Rev. Lett. 83, 2691–2691 (1999)
Drummond, P. D., Kheruntsyan, K. V. & He, H. Coherent molecular solitons in Bose-Einstein condensates. Phys. Rev. Lett. 81, 3055–3058 (1998)
Holland, M., Park, J. & Walser, R. Formation of pairing fields in resonantly coupled atomic and molecular Bose-Einstein condensates. Phys. Rev. Lett. 86, 1915–1918 (2001)
Góral, K., Gajda, M. & Rza¸żewski, K. Multimode dynamics of a coupled ultracold atomic-molecular system. Phys. Rev. Lett. 86, 1397–1401 (2001)
Vardi, A., Yurovsky, V. A. & Anglin, J. R. Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate. Phys. Rev. A 64, 063611-1–063611-5 (2001)
Stenger, J. et al. Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances. Phys. Rev. Lett. 82, 2422–2425 (1999)
Cornish, S. L., Claussen, N. R., Roberts, J. L., Cornell, E. A. & Wieman, C. E. Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795–1798 (2000)
Claussen, N. R., Cornish, S. L., Roberts, J. L., Cornell, E. A. & Wieman, C. E. in Atomic Physics 17 (eds Arimondo, E., DeNatale, P. & Inguscio, M.) 325–336 (American Institute of Physics, New York, 2001)
Claussen, N. R., Donley, E. A., Thompson, S. T. & Wieman, C. E. Microscopic dynamics in a strongly interacting Bose-Einstein condensate. Phys. Rev. Lett. (submitted); preprint cond-mat/0201400 at 〈http://xxx.lanl.gov〉 (2002).
Roberts, J. L. et al. Controlled collapse of a Bose-Einstein condensate. Phys. Rev. Lett. 86, 4211–4214 (2001)
Pérez-García, V. M., Michinel, H., Cirac, J. I., Lewenstein, M. & Zoller, P. Dynamics of Bose-Einstein condensates: variational solutions of the Gross-Pitaevskii equations. Phys. Rev. A 56, 1424–1432 (1997)
Donley, E. A. et al. Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412, 295–299 (2001)
Sakurai, J. J. Modern Quantum Mechanics 410–416 (Addison-Wesley, Reading, Massachusetts, 1994)
Roberts, J. L. et al. Improved characterization of elastic scattering near a Feshbach resonance in 85Rb. Phys. Rev. A 64, 024702-1–024702-3 (2001)
van Kempen, E. G. M., Kokkelmans, S. J. J. M. F., Heinzen, D. J. & Verhaar, B. J. Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Phys. Rev. Lett. 88, 093201-1–093201-4 (2002)
Ramsey, N. F. A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–699 (1950)
Acknowledgements
We acknowledge contributions from E. A. Cornell and the JILA quantum gas collaboration. We are grateful to C. H. Greene and S. J. J. M. F. Kokkelmans for providing the coupled-channels scattering calculations presented in Fig. 5 and to L. Pitaevskii for numerous discussions. S.T.T. acknowledges the support of an ARO-MURI Fellowship. This work was also supported by ONR and NSF.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Donley, E., Claussen, N., Thompson, S. et al. Atom–molecule coherence in a Bose–Einstein condensate. Nature 417, 529–533 (2002). https://doi.org/10.1038/417529a
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/417529a
This article is cited by
-
Quantum register of fermion pairs
Nature (2022)
-
Spectroscopic probes of quantum gases
Nature Physics (2021)
-
Molecular collisions: From near-cold to ultra-cold
Frontiers of Physics (2021)
-
Tunable spinful matter wave valve
Scientific Reports (2019)
-
New frontiers for quantum gases of polar molecules
Nature Physics (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.