Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding and exploiting C–H bond activation

Abstract

The selective transformation of ubiquitous but inert C–H bonds to other functional groups has far-reaching practical implications, ranging from more efficient strategies for fine chemical synthesis to the replacement of current petrochemical feedstocks by less expensive and more readily available alkanes. The past twenty years have seen many examples of C–H bond activation at transition-metal centres, often under remarkably mild conditions and with high selectivity. Although profitable practical applications have not yet been developed, our understanding of how these organometallic reactions occur, and what their inherent advantages and limitations for practical alkane conversion are, has progressed considerably. In fact, the recent development of promising catalytic systems highlights the potential of organometallic chemistry for useful C–H bond activation strategies that will ultimately allow us to exploit Earth's alkane resources more efficiently and cleanly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An example of agostic bonding.
Figure 2: Possible structures of sigma complexes.
Figure 3: Pathway for oxidative addition of an alkane.
Figure 4: Detailed mechanism of oxidative addition.
Figure 5: Mechanism of methane oxidation in the Shilov system48.
Figure 6: Hypothetical sequence for alkane oxidation to alcohol by O2 and catalysed by a Pt(II) complex.
Figure 7: The Catalytica system for methane oxidation58.

Similar content being viewed by others

References

  1. Duetz, W. A., van Beilen, J. B. & Witholt, B. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotech. 12, 419–425 (2001)

    Article  CAS  Google Scholar 

  2. Ortiz de Montellano, P. R. (ed.) Cytochrome P450: Structure, Mechanism and Biochemistry 2nd edn (Plenum, New York, 1995)

  3. Brazeau, B. J. & Lipscomb, J. D. in Enzyme-Catalyzed Electron and Radical Transfer (ed. Holzenburg, A.Scrutton, N. S.) 233–277 (Kluwer, New York, 2000)

    Book  Google Scholar 

  4. Gradassi, M. J. & Green, N. W. Economics of natural gas conversion processes. Fuel Proc. Technol. 42, 65–83 (1995)

    Article  CAS  Google Scholar 

  5. Collman, J. P., Hegedus, L. S., Norton, J. R. & Finke, R. G. Principles and Applications of Organotransition Metal Chemistry Ch. 7, 2nd edn (Univ. Science, Mill Valley, 1987)

    Google Scholar 

  6. Sheldon, R. A. & Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds Ch. 4 (Academic, New York, 1981)

    Google Scholar 

  7. Fryzuk, M. D. & Johnson, S. A. The continuing story of dinitrogen activation. Coord. Chem. Rev. 200–202, 379–409 (2000)

    Article  Google Scholar 

  8. Green, M. L. H. & Knowles, P. J. Formation of a tungsten phenyl hydride derivative from benzene. J. Chem. Soc. Chem. Commun. 1677 (1970)

  9. Foley, P. & Whitesides, G. M. Thermal generation of bis(triethylphosphine)-3,3-dimethylplatinacyclobutane from dineopentylbis(triethylphosphine)platinum(II). J. Am. Chem. Soc. 101, 2732–2733 (1979)

    Article  CAS  Google Scholar 

  10. Bennett, M. A. & Milner, D. L. Chlorotris(triphenylphosphine)iridium(I): An example of hydrogen transfer to a metal from a coordinated ligand. J. Chem. Soc. Chem. Commun. 581–582 (1967)

  11. Shilov, A. E. & Shteinman, A. A. Activation of saturated hydrocarbons by metal complexes in solution. Coord. Chem. Rev. 24, 97–143 (1977)

    Article  CAS  Google Scholar 

  12. Brookhart, M. & Green, M. L. H. Carbon-hydrogen-transition metal bonds. J. Organometall. Chem. 250, 395–408 (1983)

    Article  CAS  Google Scholar 

  13. Dawoodi, Z., Green, M. L. H., Mtetwa, V. S. B. & Prout, K. Evidence for a direct bonding interaction between titanium and a beta-C-H moiety in a titanium-ethyl compound: X-ray crystal-structure of [Ti(Me2PCH2CH2PMe2)EtCl3]. J. Chem. Soc. Chem. Commun. 802–803 (1982)

  14. Halpern, J. Activation of carbon hydrogen-bonds by metal complexes: mechanistic, kinetic and thermodynamic considerations. Inorg. Chim. Acta 100, 41–48 (1985)

    Article  CAS  Google Scholar 

  15. Janowicz, A. H. & Bergman, R. G. C-H activation in completely saturated hydrocarbons: direct observation of M + R-H → M(R)(H). J. Am. Chem. Soc. 104, 352–354 (1982)

    Article  CAS  Google Scholar 

  16. Hoyano, J. K. & Graham, W. A. G. Oxidative addition of the carbon hydrogen-bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex. J. Am. Chem. Soc. 104, 3723–3725 (1982)

    Article  CAS  Google Scholar 

  17. Shilov, A. E. & Shul'pin, G. B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes (Kluwer Academic, Dordrecht, 2000)

    Google Scholar 

  18. Wu, J. & Bergman, R. G. Conversion of epoxides to rhodium enolates: direct evidence for a mechanism involving initial C-H activation. J. Am. Chem. Soc. 111, 7628–7630 (1989)

    Article  CAS  Google Scholar 

  19. Russell, G. A. in Free Radicals (ed. Kochi, J. K.) 275–331 (Wiley, New York, 1973)

    Google Scholar 

  20. Jordan, R. F. & Taylor, D. F. Zirconium-catalyzed coupling of propene and alpha-picoline. J. Am. Chem. Soc. 111, 778–779 (1989)

    Article  CAS  Google Scholar 

  21. Jia, C. et al. Efficient activation of aromatic C–H bonds for addition to C–C multiple bonds. Science 287, 1992–1995 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Matsumoto, T., Taube, D., Periana, R. A., Taube, H. & Yoshida, H. Anti-Markovnikov olefin arylation catalyzed by an iridium complex. J. Am. Chem. Soc. 122, 7414–7415 (2000)

    Article  CAS  Google Scholar 

  23. Watson, P. L. Methane exchange reactions of lanthanide and early transition metal methyl complexes. J. Am. Chem. Soc. 105, 6491–6493 (1983)

    Article  CAS  Google Scholar 

  24. Thompson, M. E. et al. “Sigma bond metathesis” for C-H bonds of hydrocarbons and Sc-R (R = H, alkyl, aryl) bonds of permethylscandocene derivatives. Evidence for the noninvolvement of the pi system in electrophilic activation of aromatic and vinylic C-H bonds. J. Am. Chem. Soc. 109, 203–219 (1987)

    Article  CAS  Google Scholar 

  25. Rothwell, I. P. Cyclometalation chemistry of aryl oxide ligation. Acc. Chem. Res. 21, 153–159 (1988)

    Article  CAS  Google Scholar 

  26. Vidal, V., Théolier, A., Thivolle-Cazat, J., Basset, J. M. & Corker, J. Synthesis, characterization, and reactivity, in the C-H bond activation of cycloalkanes, of a silica-supported tantalum(III) monohydride complex: (≡SiO)2TaIII-H. J. Am. Chem. Soc. 118, 4595–4602 (1996)

    Article  CAS  Google Scholar 

  27. Niccolai, G. P. & Basset, J. M. Primary selectivity in the activation of the carbon-hydrogen bonds of propane by silica supported zirconium hydride. Appl. Catal. A 146, 145–156 (1996)

    Article  CAS  Google Scholar 

  28. Sherry, A. E. & Wayland, B. B. Metalloradical activation of methane. J. Am. Chem. Soc. 112, 1259–1261 (1990)

    Article  CAS  Google Scholar 

  29. Wayland, B. B., Ba, S. & Sherry, A. E. Activation of methane and toluene by rhodium(II) porphyrin complexes. J. Am. Chem. Soc. 113, 5305–5311 (1991)

    Article  CAS  Google Scholar 

  30. Cummins, C. C., Baxter, S. M. & Wolczanski, P. T. Methane and benzene activation via transient (tBu3SiNH)2Zr = NSitBu3 . J. Am. Chem. Soc. 110, 8731–8733 (1988)

    Article  CAS  Google Scholar 

  31. Walsh, P. J., Hollander, F. J. & Bergman, R. G. Generation, alkyne cycloaddition, arene C-H activation, N-H activation, and dative ligand trapping reactions of the first monomeric imidozirconocene (Cp2Zr = NR) complexes. J. Am. Chem. Soc. 110, 8729–8731 (1988)

    Article  CAS  Google Scholar 

  32. Bennett, J. L. & Wolczanski, P. T. Selectivities in hydrocarbon activation: kinetic and thermodynamic investigations of reversible 1,2-RH-elimination from (silox)2(tBu3SiNH)TiR (silox = tBu3SiO). J. Am. Chem. Soc. 119, 10696–10719 (1997)

    Article  CAS  Google Scholar 

  33. Schafer, D. F. & Wolczanski, P. T. d0 alkane complexes (tBu3SiN = )3W(RH) precede C-H activation and formation of (tBu3SiN = )2(tBu3SiNH)WR/R′. J. Am. Chem. Soc. 120, 4881–4882 (1998)

    Article  CAS  Google Scholar 

  34. Tran, E. & Legzdins, P. Thermal alkane C–H bond activation by a tungsten alkylidene complex: the reversal of α-hydrogen elimination. J. Am. Chem. Soc. 119, 5071–5072 (1997)

    Article  CAS  Google Scholar 

  35. Stahl, S. S., Labinger, J. A. & Bercaw, J. E. Homogeneous oxidation of alkanes by electrophilic late transition metals. Angew. Chem. Int. Edn Engl. 37, 2180–2192 (1998)

    Article  Google Scholar 

  36. Hall, C. & Perutz, R. Transition metal alkane complexes. Chem. Rev. 96, 3125–3146 (1996)

    Article  CAS  Google Scholar 

  37. Geftakis, S. & Ball, G. E. Direct observation of a transition metal alkane complex, CpRe(CO)2(cyclopentane), using NMR spectroscopy. J. Am. Chem. Soc. 120, 9953–9954 (1998)

    Article  CAS  Google Scholar 

  38. Weiller, B. H., Wasserman, E. P., Bergman, R. G., Moore, C. B. & Pimentel, G. C. Time-resolved IR spectroscopy in liquid rare gases: direct rate measurement of an intermolecular alkane C-H oxidative addition reaction. J. Am. Chem. Soc. 111, 8288–8290 (1989)

    Article  CAS  Google Scholar 

  39. Bengali, A. A., Schultz, R. H., Moore, C. B. & Bergman, R. G. Activation of the C-H bonds in neopentane and neopentane-d12 by (η5-(C5(CH3)5)Rh(CO)2: spectroscopic and temporal resolution of rhodium–krypton and rhodium-alkane complex intermediates. J. Am. Chem. Soc. 116, 9585–9589 (1994)

    Article  CAS  Google Scholar 

  40. Gross, C. L. & Girolami, G. S. Metal-alkane complexes. Rapid exchange of hydrogen atoms between hydride and methyl ligands in [(C5Me5)Os(dmpm)(CH3)H]+. J. Am. Chem. Soc. 120, 6605–6606 (1998)

    Article  CAS  Google Scholar 

  41. Heinekey, D. M. & Oldham, W. Coordination chemistry of dihydrogen. Chem. Rev. 93, 913–926 (1993)

    Article  CAS  Google Scholar 

  42. Bromberg, S. E. et al. The mechanism of a C-H bond activation reaction in room-temperature alkane solution. Science 278, 260–263 (1997)

    Article  CAS  Google Scholar 

  43. Thompson, M. E. et al. σ-Bond metathesis for carbon-hydrogen bonds of hydrocarbons and Sc-R (R = H, alkyl, aryl) bonds of permethylscandocene derivatives. Evidence for noninvolvement of the π system in electrophilic activation of aromatic and vinylic C-H bonds. J. Am. Chem. Soc. 109, 203–219 (1987)

    Article  CAS  Google Scholar 

  44. Jones, W. D. & Feher, F. J. The mechanism and thermodynamics of alkane and arene carbon-hydrogen bond activation in (C5Me5)Rb(PMe3)(R)H. J. Am. Chem. Soc. 106, 1650–1663 (1984)

    Article  CAS  Google Scholar 

  45. Janowicz, A. H. & Bergman, R. G. Activation of C–H bonds in saturated hydrocarbons on photolysis of (η5-C5Me5)(PMe3)IrH2: relative rates of reaction of the intermediate with different types of C-H bonds and functionalization of the metal-bound alkyl-groups. J. Am. Chem. Soc. 105, 3929–3939 (1983)

    Article  CAS  Google Scholar 

  46. McNamara, B. K., Yeston, J. S., Bergman, R. G. & Moore, C. B. The effect of alkane structure on rates of photoinduced C-H bond activation by Cp*Rh(CO)2 in liquid rare gas media: An infrared flash kinetics study. J. Am. Chem. Soc. 121, 6437–6443 (1999)

    Article  CAS  Google Scholar 

  47. Shilov, A. E. & Shulpin, G. B. Activation and catalytic reactions of alkanes in solutions of metal complexes. Russ. Chem. Rev. 56, 442–464 (1987)

    Article  ADS  Google Scholar 

  48. Luinstra, G. A., Wang, L., Stahl, S. S., Labinger, J. A. & Bercaw, J. E. C-H activation by aqueous platinum complexes: a mechanistic study. J. Organometall. Chem. 504, 75–91 (1995)

    Article  CAS  Google Scholar 

  49. Shilov, A. E Activation of Saturated Hydrocarbons by Transition Metal Complexes (Reidel, Boston, 1984)

    Google Scholar 

  50. Labinger, J. A., Herring, A. M., Lyon, D. K., Luinstra, G. A., Bercaw, J. E., Horváth, I. & Eller, K. Oxidation of hydrocarbons by aqueous platinum salts: mechanism and selectivity. Organometallics 12, 895–905 (1993)

    Article  CAS  Google Scholar 

  51. Sen, A., Benvenuto, M. A., Lin, M., Hutson, A. C. & Basickes, N. Activation of methane and ethane and their selective oxidation to the alcohols in protic media. J. Am. Chem. Soc. 116, 998–1003 (1994)

    Article  CAS  Google Scholar 

  52. Freund, M. S., Labinger, J. A., Lewis, N. S. & Bercaw, J. E. Electrocatalytic functionalization of alkanes using aqueous platinum salts. J. Mol. Catal. 87, L11–L16 (1994)

    Article  CAS  Google Scholar 

  53. Geletti, Y. V. & Shilov, A. E. Catalytic oxidation of alkanes by molecular oxidation. Oxidation of methane in the presence of platinum salts and heteropoly acids. Kinetics Catal. Engl. Trans. 24, 413–416 (1983)

    Google Scholar 

  54. Lin, M., Shen, C., Garcia-Zayas, E. A. & Sen, A. Catalytic Shilov chemistry: Platinum chloride-catalyzed oxidation of terminal methyl groups by dioxygen. J. Am. Chem. Soc. 123, 1000–1001 (2001)

    Article  CAS  Google Scholar 

  55. Holtcamp, M. W., Henling, L. M., Day, M. W., Labinger, J. A. & Bercaw, J. E. Intramolecular and intermolecular C-H activation at a cationic platinum(II) center. Inorg. Chim. Acta 270, 467–478 (1998)

    Article  CAS  Google Scholar 

  56. Johansson, L., Tilset, M., Labinger, J. A. & Bercaw, J. E. Mechanistic investigation of benzene C-H activation at a cationic platinum(II) center. Direct observation of a platinum(II) benzene adduct. J. Am. Chem. Soc. 122, 10846–10855 (1997)

    Article  Google Scholar 

  57. Rostovtsev, V. V., Labinger, J. A., Bercaw, J. E., Lasseter, T. L. & Goldberg, K. I. Oxidation of dimethylplatinum(II) complexes with dioxygen. Organometallics 17, 4530–4531 (1998)

    Article  CAS  Google Scholar 

  58. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998)

    Article  ADS  CAS  Google Scholar 

  59. Waltz, K. M. & Hartwig, J. F. Selective functionalization of alkanes by transition-metal boryl complexes. Science 277, 211–231 (1997)

    Article  CAS  Google Scholar 

  60. Chen, H. Y. & Hartwig, J. F. Catalytic, regiospecific end-functionalization of alkanes: rhenium-catalyzed borylation under photochemical conditions. Angew. Chem. Int. Edn Engl. 38, 3391–3393 (1999)

    Article  CAS  Google Scholar 

  61. Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000)

    Article  ADS  CAS  Google Scholar 

  62. Iverson, C. N. & Smith, M. R. Stoichiometric and catalytic B–C bond formation from unactivated hydrocarbons and boranes. J. Am. Chem. Soc. 121, 7096–7097 (1999)

    Google Scholar 

  63. Crabtree, R. H., Mihelcic, J. M. & Quirk, J. M. Iridium complexes in alkane dehydrogenation. J. Am. Chem. Soc. 101, 7738–7739 (1979)

    Article  CAS  Google Scholar 

  64. Jensen, C. M. Iridium PCP pincer complexes: highly active and robust catalysts for novel homogeneous aliphatic dehydrogenations. Chem. Commun. 2443–2449 (1999)

  65. Liu, F. C., Pak, E. B., Singh, B., Jensen, C. M. & Goldman, A. S. Dehydrogenation of n-alkanes catalyzed by iridium “pincer” complexes: regioselective formation of alpha-olefins. J. Am. Chem. Soc. 121, 4086–4087 (1999)

    Article  CAS  Google Scholar 

  66. Liu, F. C. & Goldman, A. S. Efficient thermochemical alkane dehydrogenation and isomerization catalyzed by an iridium pincer complex. Chem. Commun. 655–656 (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay A. Labinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labinger, J., Bercaw, J. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002). https://doi.org/10.1038/417507a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/417507a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing