
separate non-bonded groups using only X-ray terms in the target function. SigmaA-
weighted electron-density maps30 and the program EDEN26 were used to check and to
eliminate model bias. In the EDEN runs, the haem and its ligands were removed from the
protein model and EDEN was used with a gentle solvent target to recover these missing
molecules completely. In all cases shown here, the haem and its bound ligands were
recovered and the electron density was at least as clear as in the starting maps, indicating
that refinement proceeded without model bias. In order to perform further tests, the
EDEN solution was perturbed by independently changing amplitudes and phases in the
file of the calculated structure factor amplitudes (F calc), using a 30% random gaussian
perturbation; the resulting perturbed F calc file served as the starting model for another
EDEN run. The perturbation/recovery steps were repeated 10 times and the resulting 10
maps were then averaged. These maps showed excellent agreements with the starting
maps. Occupancy of the ligands were refined in SHELXL (http://shelx.uni-ac.gwdg.de/
SHELX).

Models were inspected with O (http://xray.bmc.uu.se/alwyn) and figures were
rendered by POV-Ray (http://www.povray.org), using the Molray interface at http://
xray.bmc.uu.se/markh.

Coordinates and structure factors have been deposited in the Protein Data Bank
(accession codes 1h5m, 1h5d, 1h5e, 1h5f, 1h5g, 1h5h, 1h5i, 1h5j, 1h5k, 1h5l, for the
structures in Table 1 of the Supplementary Information and 1h58, 1h5a, 1h57, 1h5c, 1hch
and 1h55 for the structures in Table 2 of the Supplementary Information).
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This laboratory reported the in vitro evolution of an enzyme with
phosphoribosyl anthranilate isomerase activity (ivePRAI) from the
a/b-barrel scaffold of indole-3-glycerol-phosphate synthase using a
combination of rationally designed libraries, DNA shuffling, and
selection with Escherichia coli, JA300, a strain that lacks an active
PRAI gene. As part of the ongoing project to characterize the
structure and properties of ivePRAI, we discovered that the protein
expressed from a variety of vectors that contained a synthetic gene
corresponding to the sequence of ivePRAI as published is insoluble
and does not complement JA300 (R. L. Weinberg, C. M. Blair and
A.R.F., unpublished results), as reported. We conclude that the
results are unsound.

It appears that the discrepancy in the results is due to a
combination of two episodes of cross-contamination. We are now
repeating the directed evolution of ivePRAI using modified pro-
cedures to test the design strategy that should eliminate the source
of errors of contamination.

The first author of this Article (M.M.A.), who was responsible for
most of the analysis and design strategy involving loop transfer and
most of the experimental work, wishes to be dissociated from this
retraction because she believes that the experimental data are
fundamentally sound. A
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