Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles

Abstract

Protein-based hydrogels are used for many applications, ranging from food and cosmetic thickeners to support matrices for drug delivery and tissue replacement1,2,3. These materials are usually prepared using proteins extracted from natural sources, which can give rise to inconsistent properties unsuitable for medical applications4. Recent developments have utilized recombinant DNA methods to prepare artificial protein hydrogels with specific association mechanisms and responsiveness to various stimuli5,6. Here we synthesize diblock copolypeptide amphiphiles containing charged and hydrophobic segments. Dilute solutions of these copolypeptides would be expected to form micelles; instead, they form hydrogels that retain their mechanical strength up to temperatures of about 90 °C and recover rapidly after stress. The use of synthetic materials permits adjustment of copolymer chain length and composition, which we varied to study their effect on hydrogel formation and properties. We find that gelation depends not only on the amphiphilic nature of the polypeptides, but also on chain conformations—α-helix, β-strand or random coil. Indeed, shape-specific supramolecular assembly is integral to the gelation process, and provides a new class of peptide-based hydrogels with potential for applications in biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gelation behaviour of aqueous diblock copolypeptide solutions.
Figure 2: Rheology of diblock copolypeptide solutions.
Figure 3: Molecular conformation of diblock copolypeptides.

Similar content being viewed by others

References

  1. Okano, T. (ed.) Biorelated Polymers and Gels (Academic, San Diego, 1998)

  2. Dagani, R. Intelligent gels. Chem. Eng. News 75 23, 26–37 (1997)

    Article  Google Scholar 

  3. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H. & Zhang, J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2, 9–29 (2000)

    Article  CAS  Google Scholar 

  4. Ward, A. G. & Courts, A. (eds) The Science and Technology of Gelatin (Academic, London, 1977)

  5. Petka, W. A., Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Wang, C., Stewart, R. J. & Kopeček, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397, 417–420 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Deming, T. J. Facile synthesis of block copolypeptides of defined architecture. Nature 390, 386–389 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Deming, T. J. Cobalt and iron initiators for the controlled polymerization of alpha-amino acid-N-carboxyanhydrides. Macromolecules 32(13), 4500–4502 (1999)

    Article  ADS  Google Scholar 

  9. Katchalski, E. & Sela, M. Synthesis and chemical properties of poly-α-amino acids. Adv. Protein Chem. 13, 243–492 (1958)

    Article  CAS  Google Scholar 

  10. Buitenhuis, J. & Forster, S. Block copolymer micelles: viscoelasticity and interaction potential of soft spheres. J. Chem. Phys. 107(1), 262–272 (1997)

    Article  ADS  Google Scholar 

  11. Guenoun, P. et al. Polyelectrolyte micelles: self-diffusion and electron microscopy studies. Langmuir 16(10), 4436–4440 (2000)

    Article  Google Scholar 

  12. Hamley, I. W. et al. From hard to soft spheres: the effect of copolymer composition on the structure of micellar cubic phases formed by diblock copolymers in aqueous solution. Langmuir 16(6), 2508–2514 (2000)

    Article  Google Scholar 

  13. Won, Y-Y., Davis, H. T. & Bates, F. S. Giant wormlike rubber micelles. Science 283, 960–963 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Moffitt, M., Khougaz, K. & Eisenberg, A. Micellization of ionic block copolymers. Acc. Chem. Res. 29, 95–102 (1996)

    Article  CAS  Google Scholar 

  15. Tsitsilianis, C., Iliopoulos, I. & Ducouret, G. An associative polyelectrolyte end-capped with short polystyrene chains. Synthesis and rheological behaviour. Macromolecules 33(8), 2936–2943 (2000)

    Article  ADS  Google Scholar 

  16. Clark, A. C. & Ross-Murphy, S. B. Structural and mechanical properties of biopolymer gels. Adv. Polym. Sci. 83, 57–192 (1987)

    Article  CAS  Google Scholar 

  17. Kavanagh, G. M. & Ross-Murphy, S. B. Rheological characterisation of polymer gels. Prog. Polym. Sci. 23(3), 533–562 (1998)

    Article  Google Scholar 

  18. Yu, M., Nowak, A. P., Pochan, D. P. & Deming, T. J. Methylated mono- and diethyleneglycol functionalized polylysines: nonionic, helical, water soluble polypeptides. J. Am. Chem. Soc. 121, 12210–12211 (1999)

    Article  CAS  Google Scholar 

  19. Crocker, J. C. et al. Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85(4), 888–891 (2000)

    Article  ADS  Google Scholar 

  20. Mason, T. G. & Weitz, D. A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74(7), 1250–1253 (1995)

    Article  ADS  Google Scholar 

  21. Liu, L., Li, P. & Asher, S. A. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel. Nature 397, 141–144 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001)

    Article  CAS  Google Scholar 

  23. Falini, G., Fermani, S., Gazzano, M. & Ripamonti, A. Polymorphism and architectural crystal assembly of calcium carbonate in biologically inspired polymeric matrices. J. Chem. Soc. Dalton 21, 3983–3987 (2000)

    Article  Google Scholar 

  24. Cha, J. N., Stucky, G. D., Morse, D. E. & Deming, T. J. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403, 289–292 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Hoffmann, H. & Ulbricht, W. Surfactant gels. Curr. Opin. Colloid Interf. Sci. 1, 726–739 (1996)

    Article  CAS  Google Scholar 

  26. Klein, H. F. & Karsch, H. H. Methylcobalt compounds with non-chelating ligands. 1. Methyltetrakis(trimethylphosphine) cobalt and its derivatives. Chem. Ber. 108(3), 944–955 (1975)

    Article  Google Scholar 

  27. Kubota, S. & Fasman, G. Conformation and optical properties of poly(L-valine) in aqueous solution. “A single extended β chain.”. J. Am. Chem. Soc. 96, 4684–4686 (1974)

    Article  CAS  Google Scholar 

  28. Adler, A. J., Greenfield, N. J. & Fasman, G. D. Circular dichroism and optical rotary dispersion of proteins and polypeptides. Methods Enzymol. 27, 675–735 (1973)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation (Chemical and Transport Systems, and MRSEC Program). V.B. thanks the Netherlands Organization for Scientific Research (NWO) for a Talent-grant. We thank J. Hu for assistance with NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Deming.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, A., Breedveld, V., Pakstis, L. et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002). https://doi.org/10.1038/417424a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417424a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing