Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Megagauss sensors


Magnetic fields change the way that electrons move through solids. The nature of these changes reveals information about the electronic structure of a material and, in auspicious circumstances, can be harnessed for applications. The silver chalcogenides, Ag2Se and Ag2Te, are non-magnetic materials, but their electrical resistance can be made very sensitive to magnetic field by adding small amounts—just 1 part in 10,000—of excess silver1,2,3,4. Here we show that the resistance of Ag2Se displays a large, nearly linear increase with applied magnetic field without saturation to the highest fields available, 600,000 gauss, more than a million times the Earth's magnetic field. These characteristics of large (thousands of per cent) and near-linear response over a large field range make the silver chalcogenides attractive as magnetic-field sensors, especially in physically tiny megagauss (106 G) pulsed magnets where large fields have been produced but accurate calibration has proved elusive. High-field studies at low temperatures reveal both oscillations in the magnetoresistance and a universal scaling form that point to a quantum origin5,6 for this material's unprecedented behaviour.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Pulsed magnet characteristics and low-noise data extraction.
Figure 2: Magnetotransport of Ag2+δSe with δ≈10-4 in a 55-T pulsed magnetic field.
Figure 3: Scaling of the data of Fig. 2 using a modified Kohler plot where both n(H) and H are implicit variables.
Figure 4


  1. Xu, R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 (1997)

    ADS  CAS  Article  Google Scholar 

  2. Chuprakov, I. S. & Dahmen, K. H. Large positive magnetoresistance in thin films of silver telluride. Appl. Phys. Lett. 72, 2165–2167 (1998)

    ADS  CAS  Article  Google Scholar 

  3. Ogorelec, Z., Hamzic, A. & Basletic, M. On the optimization of the large magnetoresistance of Ag2Se. Europhys. Lett. 46, 56–61 (1999)

    ADS  Article  Google Scholar 

  4. Schnyders, H. S., Saboungi, M.-L. & Rosenbaum, T. F. Magnetoresistance in n- and p-type Ag2Te: Mechanisms and applications. Appl. Phys. Lett. 76, 1710–1712 (2000)

    ADS  CAS  Article  Google Scholar 

  5. Abrikosov, A. Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998)

    ADS  CAS  Article  Google Scholar 

  6. Abrikosov, A. Quantum linear magnetoresistance. Europhys. Lett. 49, 789–793 (2000)

    ADS  CAS  Article  Google Scholar 

  7. Boebinger, G. S., Lacerda, A. H., Schneider-Muntau, H. J. & Sullivan, N. The National High Magnetic Field Laboratory's pulsed magnetic field facility in Los Alamos. Physica B 294–295, 512–518 (2001)

    ADS  Article  Google Scholar 

  8. Mackay, K., Bonfim, M., Givord, D. & Fontaine, A. 50 T pulsed magnetic fields in microcoils. J. Appl. Phys. 87, 1996–2002 (2000)

    ADS  CAS  Article  Google Scholar 

  9. von Ortenberg, M. et al. The Humboldt high magnetic field center at Berlin. Physica B 294–295, 568–573 (2001)

    ADS  Article  Google Scholar 

  10. Drndic, M., Johnson, K. S., Thywissen, J. H., Prentiss, M. & Westervelt, R. M. Micro-electromagnets for atom manipulation. Appl. Phys. Lett. 72, 2906–2908 (1998)

    ADS  CAS  Article  Google Scholar 

  11. Kohler, M. Zur magnetischen Widerstandsänderung reiner Metalle. Ann. Phys. 32, 211–218 (1938)

    CAS  Article  Google Scholar 

  12. Pippard, A. P. Magnetoresistance in Metals (Cambridge Univ. Press, Cambridge, 1989)

    Google Scholar 

  13. McKenzie, R. H., Qualls, J. S., Han, S. Y. & Brooks, J. S. Violation of Kohler's rule by the magnetoresistance of a quasi-two-dimensional organic metal. Phys. Rev. B 57, 11854–11857 (1998)

    ADS  CAS  Article  Google Scholar 

  14. Harris, J. M. et al. Violation of Kohler's rule in the normal state magnetoresistance of YBa2Cu3O7-δ and La2 - xSrxCuO4 . Phys. Rev. Lett. 75, 1391–1394 (1995)

    ADS  CAS  Article  Google Scholar 

  15. Herring, C. Effect of random inhomogeneities on electrical and galvanomagnetic measurements. J. Appl. Phys. 31, 1939–1953 (1960)

    ADS  Article  Google Scholar 

  16. Aliev, S. A. & Aliev, F. F. Band parameters and energy structure of β-Ag2Se. Izv. Akad. Nauk SSSR Neorg. Mater. 21, 1869–1872 (1985)

    CAS  Google Scholar 

  17. Tritton, D. J. Physical Fluid Dynamics (Van Nostrand Reinhold, New York, 1977)

    Book  Google Scholar 

Download references


We thank H. Hwang, L. P. Kadanoff and H. S. Schnyders for discussions, and the late R. Xu for technical assistance. The work at the University of Chicago and at Argonne National Laboratory was supported by DOE Basic Energy Sciences.

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. F. Rosenbaum.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Husmann, A., Betts, J., Boebinger, G. et al. Megagauss sensors. Nature 417, 421–424 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing