Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes


A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean1,2,3,4. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres5,6 to ten or more kilometres7. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7–8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites3,8,9, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25–0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models1 and indicate that exchange of oceanic and surface material could be difficult.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Impact crater landforms on the icy galilean satellites, representing the major morphologic types.
Figure 2: Depth/diameter measurements for fresh impact craters on the icy galilean satellites.


  1. Greenberg, R. Tides and the biosphere of Europa. Am. Sci. 90, 48–55 (2002)

    ADS  Article  Google Scholar 

  2. Pappalardo, R. et al. Does Europa have a subsurface ocean? Evaluation of the geologic evidence. J. Geophys. Res. 104, 24015–24056 (1999)

    ADS  CAS  Article  Google Scholar 

  3. Kivelson, M. et al. Galileo magnetometer measurements: A stronger case for a subsurface ocean on Europa. Science 289, 1340–1343 (2000)

    ADS  CAS  Article  Google Scholar 

  4. Zimmer, C., Khurana, K. & Kivelson, M. Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus 147, 329–347 (2000)

    ADS  CAS  Article  Google Scholar 

  5. Greenberg, R., Geissler, P., Tufts, B. R. & Hoppa, G. Habitability of Europa's crust: The role of tidal-tectonic processes. J. Geophys. Res. 105, 17551–17562 (2000)

    ADS  Article  Google Scholar 

  6. Hoppa, G., Tufts, B. R., Greenberg, R. & Geissler, P. Formation of cycloidal features on Europa. Science 285, 1899–1903 (1999)

    ADS  CAS  Article  Google Scholar 

  7. Rathbun, J., Musser, G. & Squyres, S. Ice diapirs on Europa: Implications for liquid water. Geophys. Res. Lett. 25, 4157–4160 (1998)

    ADS  Article  Google Scholar 

  8. Kivelson, M., Khurana, K. & Volwerk, M. Icarus (in the press)

  9. Kivelson, M. et al. Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment. J. Geophys. Res. 104, 4609–4625 (1999)

    ADS  Article  Google Scholar 

  10. McKinnon, W. Convective instability in Europa's floating ice shell. Geophys. Res. Lett. 26, 951–954 (1999)

    ADS  Article  Google Scholar 

  11. Pike, R. in Mercury (eds Vilas, F., Chapman, C. & Matthews, M.) 165–273 (Univ. Arizona Press, Tucson, 1988)

    Google Scholar 

  12. Schenk, P. Ganymede and Callisto: Complex crater formation and planetary crusts. J. Geophys. Res. 96, 15635–15664 (1991)

    ADS  Article  Google Scholar 

  13. McKinnon, W. & Melosh, H. J. Evolution of planetary lithospheres: Evidence from multiring basins on Ganymede and Callisto. Icarus 44, 454–471 (1998)

    ADS  Article  Google Scholar 

  14. Moore, J. M. et al. Large impact features on Europa: Results from the Galileo nominal mission. Icarus 135, 127–145 (1998)

    ADS  Article  Google Scholar 

  15. Moore, J. M. et al. Large impact features on Europa: Results from the Galileo GEM mission. Icarus 151, 93–111 (2001)

    ADS  Article  Google Scholar 

  16. Turtle, E. & Pierazzo, E. Thickness of a Europan ice shell from impact crater simulations. Science 294, 1326–1328 (2001)

    ADS  CAS  Article  Google Scholar 

  17. Williams, K. & Zuber, M. Measurement and analysis of lunar basin depths from Clementine data. Icarus 131, 107–122 (1998)

    ADS  Article  Google Scholar 

  18. Melosh, H. J. Impact Cratering (Oxford Press, Oxford, 1989)

    Google Scholar 

  19. Schenk, P. Central pit and dome crater: Exposing the interiors of Ganymede and Callisto. J. Geophys. Res. 98, 7475–7498 (1993)

    ADS  Article  Google Scholar 

  20. Schenk, P. & Ridolfi, F. Morphology and scaling of ejecta deposits on icy satellites. Geophys. Res. Lett. (in the press)

  21. Dombard, A. & McKinnon, W. Long-term retention of impact crater topography on Ganymede. Geophys. Res. Lett. 27, 3663–3666 (2000)

    ADS  Article  Google Scholar 

  22. Durham, W., Kirby, S. & Stern, L. Creep of water ices under planetary conditions: A compilation. J. Geophys. Res. 102, 16293–16301 (1997)

    ADS  CAS  Article  Google Scholar 

  23. Turtle, E. & Ivanov, B. Numerical simulations of crater excavation and collapse on Europa: Implications for ice thickness. Lunar Planet. Sci. XXXIII abstr. no. 1431 (2002).

  24. Melosh, H. J. & Gaffney, E. Acoustic fluidization and the scale dependence of impact crater morphology. J. Geophys. Res. 88, A830–A834 (1983)

    Article  Google Scholar 

  25. McKinnon, W. & Schenk, P. Estimates of comet fragment masses from impact crater chains on Callisto and Ganymede. Geophys. Res. Lett. 22, 1829–1832 (1995)

    ADS  Article  Google Scholar 

  26. Anderson, J., Lau, E., Sjogren, W., Schubert, G. & Moore, W. Gravitational constraints on the internal structure of Ganymede. Nature 384, 541–543 (1996)

    ADS  CAS  Article  Google Scholar 

  27. Anderson, J. et al. Shape, mean radius, gravity field and internal structure of Callisto. Icarus 153, 157–161 (2001)

    ADS  Article  Google Scholar 

  28. Passey, Q. & Shoemaker, E. in Satellites of Jupiter (ed. Morrison, D.) 379–433 (Univ. Arizona Press, Tucson, 1982)

    Google Scholar 

  29. Collins, G., Head, J., Pappalardo, R. & Spaun, N. Evaluation of models for the formation of chaotic terrain on Europa. J. Geophys. Res. 105, 1709–1716 (2000)

    ADS  Article  Google Scholar 

Download references


This work was supported by NASA Planetary Geology and Geophysics.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paul M. Schenk.

Ethics declarations

Competing interests

The author declares that he has no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schenk, P. Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes. Nature 417, 419–421 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing