Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Robots in invertebrate neuroscience

Abstract

Can we now build artificial animals? A combination of robot technology and neuroethological knowledge is enabling the development of realistic physical models of biological systems. And such systems are not only of interest to engineers. By exploring identified neural control circuits in the appropriate functional and environmental context, new insights are also provided to biologists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A robot model of chemotaxis of a nematode worm.
Figure 2: Replicating an insect's visual motion detection system using an optomotor chip.
Figure 3: Robot modelling of a cricket's escape response.

Similar content being viewed by others

References

  1. Pichon, J.-M., Blanes, C. & Franceschini, N. in Mobile Robots IV (eds Wolfe, W. J. & Chun, W. H.) 44–53 (Society of Photo-optical Instrumentation Engineers, Bellingham, 1989).

    Google Scholar 

  2. Franceschini, N., Pichon, J. M. & Blanes, C. From insect vision to robot vision. Phil. Trans. R. Soc. Lond. B 337, 283–294 (1992).

    Article  ADS  Google Scholar 

  3. Franceschini, N. Engineering applications of small brains. FED J. 7, 38–52 (1996).

    CAS  Google Scholar 

  4. Mura, F. & Franceschini, N. in Intelligent Vehicles II (eds Aoki, M. & Masaki, I.) 47–52 (MIT Press, Cambridge, MA, 1996).

    Google Scholar 

  5. Cruse, H., Bartling, C., Cymbalyuk, G., Dean, J. & Dreifert, M. A modular artificial neural network for controlling a six-legged walking system. Biol. Cybern. 72, 421–430 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Cruse, H., Kindermann, T., Schumm, M., Dean, J. & Schmitz, J. Walknet—a biologically inspired network to control six-legged walking. Neural Networks 11, 1435–1447 (1998).

    Article  PubMed  Google Scholar 

  7. Lambrinos, D. et al. An autonomous agent navigating with a polarized light compass. Adapt. Behav. 6, 175–206 (1997).

    Article  Google Scholar 

  8. Lambrinos, D., Moller, R., Labhart, T., Pfeifer, R. & Wehner, R. A mobile robot employing insect strategies for navigation. Robot. Auton. Syst. 30, 39–64 (2000).

    Article  Google Scholar 

  9. Wehner, R. in Neural Basis of Behavioural Adaptations (eds Schildberger, K. & Elsner, N.) 103–143 (Fischer, Stuttgart, 1994).

    Google Scholar 

  10. Labhart, T. Polarization-opponent interneurons in the insect visual system. Nature 331, 435–437 (1988).

    Article  ADS  Google Scholar 

  11. Rind, F. C. & Simmons, P. J. Signalling of object approach by the DCMD neuron of the locust. J. Neurophysiol. 77, 1029–1033 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Blanchard, M., Rind, F. C. & Verschure, P. F. M. J. Collision avoidance using a model of the locust LGMD neuron. Robot. Auton. Syst. 30, 17–38 (2000).

    Article  Google Scholar 

  13. Morse, T. M., Ferree, T. C. & Lockery, S. R. Robust spatial navigation in a robot inspired by chemotaxis in Caenorhabditis elegans. Adapt. Behav. 6, 393–410 (1998).

    Article  Google Scholar 

  14. Damper, R. I., French, R. L. B. & Scutt, T. W. ARBIB: an autonomous robot based on inspirations from biology. Robot. Auton. Syst. 31, 247–274 (2000).

    Article  Google Scholar 

  15. Grasso, F., Consi, T., Mountain, D. & Atema, J. in From Animals to Animats 4: Proc. Sixth Int. Conf. Simul. Adapt. Behav. (eds Maes, P., Mataric, M. J., Meyer, J. A., Pollack, J. & Wilson, S. W.) 104–112 (MIT Press, Cambridge, MA, 1996).

    Google Scholar 

  16. Grasso, F., Consi, T., Mountain, D. & Atema, J. Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: progress and challenges. Robot. Auton. Syst. 30, 115–131 (2000).

    Article  Google Scholar 

  17. Quinn, R. D. & Ritzmann, R. E. Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology. Connect. Sci. 10, 239–254 (1998).

    Article  Google Scholar 

  18. Delcomyn, F. & Nelson, M. E. Architectures for a biomimetic hexapod robot. Robot. Auton. Syst. 30, 5–15 (2000).

    Article  Google Scholar 

  19. Kuwana, Y., Shimoyama, I. & Miura, H. in Proc. IEEE Int. Conf. Intell. Robots Syst. 530–535 (IEEE Computer Society Press, Los Alamitos, CA, 1995).

  20. Webb, B. What does robotics offer animal behaviour? Anim. Behav. 60, 545–558 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Webb, B. Are 'biorobots' good models of biological behaviour? Behav. Brain Sci. (in the press).

  22. Braitenberg, V. Vehicles: Experiments in Synthetic Psychology (MIT Press, Cambridge, MA, 1984).

    Google Scholar 

  23. Huber, F. Behavior and neurobiology of acoustically oriented insects. Naturwissenschaften 79, 393–406 (1992).

    Article  ADS  Google Scholar 

  24. Huber, F. & Thorson, J. Cricket auditory communication. Sci. Am. 253, 47–54 (1985).

    Article  Google Scholar 

  25. Wohlers, D. W. & Huber, F. Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket Gryllus campestris L. J. Comp. Physiol. 146, 161–173 (1981).

    Article  Google Scholar 

  26. Schildberger, K. Behavioural and neuronal methods of cricket phonotaxis. Experientia 44, 408–415 (1988).

    Article  Google Scholar 

  27. Wendler, G. in Sensory Systems and Communication in Arthropods (eds Gribakin, F. G., Wiese, K. & Popov, A. V.) 387–394 (Birkhäuser, Basel, 1990).

    Book  Google Scholar 

  28. Pollack, G. S. in Comparative Hearing: Insects (eds Hoy, R. R., Popper, A. N. & Fay, R. R.) 139–196 (Springer, New York, 1998).

    Book  Google Scholar 

  29. Webb, B. in From Animals to Animats 3: Proc. Third Int. Conf. Simul. Adapt. Behav. (eds Cliff, D., Husbands, P., Meyer, J.-A. & Wilson, S. W.) 45–54 (MIT Press, Cambridge, MA, 1994).

    Google Scholar 

  30. Webb, B. Using robots to model animals: a cricket test. Robot. Auton. Syst. 16, 117–134 (1995).

    Article  Google Scholar 

  31. Lund, H. H., Webb, B. & Hallam, J. in Fourth Eur. Conf. Artif. Life (eds Husbands, P. & Harvey, I.) 246–255 (MIT Press, Cambridge, MA, 1997).

  32. Lund, H. H., Webb, B. & Hallam, J. Physical and temporal scaling considerations in a robot model of cricket calling song preference. Artif. Life 4, 95–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Webb, B. & Scutt, T. A simple latency dependent spiking neuron model of cricket phonotaxis. Biol. Cybern. 82, 247–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Michelsen, A., Popov, A. V. & Lewis, B. Physics of directional hearing in the cricket Gryllus bimaculatus. J. Comp. Physiol. A 175, 153–164 (1994).

    Article  Google Scholar 

  35. Schildberger, K. Temporal selectivity of identified auditory interneurons in the cricket brain. J. Comp. Physiol. 155, 171–185 (1984).

    Article  Google Scholar 

  36. Horridge, G. A., Loughet-Higgins, H. C. & Horridge, G. A. What can engineers learn from insect vision? Phil. Trans. R. Soc. Lond. B 337, 271–282 (1992).

    Article  ADS  Google Scholar 

  37. Srinivasan, M. V. & Venkatesh, S. From Living Eyes to Seeing Machines (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  38. Lewis, A. in Advances in Neural Information Processing Systems 10 (eds Jordan, M. I., Kearns, M. J. & Solla, S. A.) 822–828 (MIT Press, Cambridge, MA 1998).

    Google Scholar 

  39. Franceschini, N. & Chagneux, R. in Neurobiology: From Membrane to Mind. Proc. 25th Gottingen Neurobiol. Conf. (eds Elsner, N. & Wassle, H.) (G. Thieme, Stuttgart, 1997).

    Google Scholar 

  40. Hoshino, K., Mura, F. & Shimoyama, I. Design and performance of a micro-sized biomorphic compound eye with a scanning retina. J. Microelectromech. Syst. 9, 32–37 (2000).

    Article  CAS  Google Scholar 

  41. Harrison, R. R. & Koch, C. A silicon implementation of the fly's optomotor control system. Neural Comput. 12, 2291–2304 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Harrison, R. R. & Koch, C. in Advances in Neural Information Processing Systems 10 (eds Jordan, M. I., Kearns, M. J. & Solla, S. A.) 880–886 (MIT Press, Cambridge, MA, 1998).

    Google Scholar 

  43. Mead, C. Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA, 1989).

    MATH  Google Scholar 

  44. Hassenstein, B. & Reichardt, W. Systemtheoretische Analyse der Zeit-, Reihenfolgen-, und Vorzeichenauswertung bei der Bewungsperzeption des Rüsselkäfers. Chlorophanus. Z. Naturforsch. 11b, 513–524 (1956).

    Article  Google Scholar 

  45. Harrison, R. R. & Koch, C. A robust analog VLSI motion sensor based on the visual system of the fly. Auton. Robot. 7, 211–224 (1999).

    Article  Google Scholar 

  46. Weber, T., Thorson, J. & Huber, F. Auditory behaviour of the cricket I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J. Comp. Physiol. A 141, 215–232 (1981).

    Article  Google Scholar 

  47. Böhm, H., Schildberger, K. & Huber, F. Visual and acoustic course control in the cricket Gryllus bimaculatus. J. Exp. Biol. 159, 235–248 (1991).

    Google Scholar 

  48. Webb, B. & Harrison, R. R. in Proc. SPIE Symp. Sensor Fusion and Decentralized Control in Robotic Systems III (eds McKee, G. T. & Schenker, P. S.) 113–124 (SPIE, Boston, MA, 2000).

    Google Scholar 

  49. Kohstall-Schnell, D. & Gras, H. Activity of giant interneurons and other wind sensitive elements of the terminal abdominal ganglion in the walking cricket. J. Exp. Biol. 193, 157–181 (1994).

    CAS  PubMed  Google Scholar 

  50. Paydar, S., Doan, C. & Jacobs, G. Neural mapping of direction and frequency in the cricket cercal system. J. Neurosci. 19, 1771–1781 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Chapman, T. Morphological and Neural Modelling of the Orthopteran Escape Response. Thesis, Univ. Stirling (2001).

    Google Scholar 

  52. Shimozawa, T. & Kanou, M. The aerodynamics and sensory physiology of range fractionation in the cercal filiform hair of the cricket Gryllus bimaculatus. J. Comp. Physiol. A 155, 495–505 (1984).

    Article  Google Scholar 

  53. Tauber, E. & Camhi, J. The wind-evoked escape behaviour of the cricket Gryllus bimaculatus: integration of behavioral elements. J. Exp. Biol. 198, 1895–1907 (1995).

    CAS  PubMed  Google Scholar 

  54. Ezrachi, E., Levi, R., Camhi, J. & Parnas, H. Right-left discrimination in a biologically oriented model of the cockroach escape system. Biol. Cybern. 81, 89–99 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Webb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, B. Robots in invertebrate neuroscience. Nature 417, 359–363 (2002). https://doi.org/10.1038/417359a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/417359a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing