What songbirds teach us about learning


Bird fanciers have known for centuries that songbirds learn their songs. This learning has striking parallels to speech acquisition: like humans, birds must hear the sounds of adults during a sensitive period, and must hear their own voice while learning to vocalize. With the discovery and investigation of discrete brain structures required for singing, songbirds are now providing insights into neural mechanisms of learning. Aided by a wealth of behavioural observations and species diversity, studies in songbirds are addressing such basic issues in neuroscience as perceptual and sensorimotor learning, developmental regulation of plasticity, and the control and function of adult neurogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Birdsongs consist of ordered, often highly stereotyped strings of sounds separated by brief silent intervals.
Figure 2: Timelines for song learning.
Figure 3: Neural substrates for learning: the song system.
Figure 4: Song selectivity.


  1. 1

    Thorpe, W. H. Bird-Song (Cambridge Univ. Press, Cambridge, 1961).

    Google Scholar 

  2. 2

    Marler, P. A comparative approach to vocal learning: song development in white-crowned sparrows. J. Comp. Physiol. Psychol. 71, 1–25 (1970).

    Google Scholar 

  3. 3

    Konishi, M. The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol. 22, 770–783 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Konishi, M. Birdsong: from behavior to neuron. Annu. Rev. Neurosci. 8, 125–170 (1985).

    CAS  Google Scholar 

  5. 5

    Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Cowie, R. & Douglas-Cowie, E. Postlingually Acquired Deafness: Speech Deterioration and the Wider Consequences (Mouton de Gruyter, Berlin, 1992).

    Google Scholar 

  7. 7

    Wild, J. M. Neural pathways for the control of birdsong production. J. Neurobiol. 33, 653–670 (1997).

    CAS  Google Scholar 

  8. 8

    Suthers, R. A., Goller, F. & Pytte, C. The neuromuscular control of birdsong. Phil. Trans. R. Soc. Lond. B 354, 927–939 (1999).

    CAS  Google Scholar 

  9. 9

    Nottebohm, F., Stokes, T. M. & Leonard, C. M. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165, 457–486 (1976).

    CAS  Google Scholar 

  10. 10

    McCasland, J. S. Neuronal control of bird song production. J. Neurosci. 7, 23–39 (1987).

    CAS  Google Scholar 

  11. 11

    Chi, Z. & Margoliash, D. Temporal precision and temporal drift in brain and behavior of zebra finch song. Neuron 32, 899–910 (2001).

    CAS  Google Scholar 

  12. 12

    Yu, A. C. & Margoliash, D. Temporal hierarchical control of singing in birds. Science 273, 1871–1875 (1996).

    ADS  CAS  Google Scholar 

  13. 13

    Vu, E. T., Mazurek, M. E. & Kuo, Y. C. Identification of a forebrain motor programming network for the learned song of zebra finches. J. Neurosci. 14, 6924–6934 (1994).

    CAS  Google Scholar 

  14. 14

    Vates, G. E., Broome, B. M., Mello, C. V. & Nottebohm, F. Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taeniopygia guttata). J. Comp. Neurol. 366, 613–642 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Janata, P. & Margoliash, D. Gradual emergence of song selectivity in sensorimotor structures of the male zebra finch song system. J. Neurosci. 19, 5108–5118 (1999).

    CAS  Google Scholar 

  16. 16

    Margoliash, D. Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. J. Neurosci. 3, 1039–1057 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Margoliash, D. & Fortune, E. S. Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc. J. Neurosci. 12, 4309–4326 (1992).

    CAS  Google Scholar 

  18. 18

    Doupe, A. J. Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. J. Neurosci. 17, 1147–1167 (1997).

    CAS  Google Scholar 

  19. 19

    Bottjer, S. W. & Johnson, F. Circuits, hormones, and learning: vocal behavior in songbirds. J. Neurobiol. 33, 602–618 (1997).

    CAS  Google Scholar 

  20. 20

    Luo, M., Ding, L. & Perkel, D. J. An avian basal ganglia pathway essential for vocal learning forms a closed topographic loop. J. Neurosci. 21, 6836–6845 (2001).

    CAS  Google Scholar 

  21. 21

    Bottjer, S. W., Miesner, E. A. & Arnold, A. P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903 (1984).

    ADS  CAS  Google Scholar 

  22. 22

    Sohrabji, F., Nordeen, E. J. & Nordeen, K. W. Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav. Neural Biol. 53, 51–63 (1990).

    CAS  Google Scholar 

  23. 23

    Scharff, C. & Nottebohm, F. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J. Neurosci. 11, 2896–2913 (1991).

    CAS  Google Scholar 

  24. 24

    Dooling, R. & Searcy, M. Early perceptual selectivity in the swamp sparrow. Dev. Psychobiol. 13, 499–506 (1980).

    CAS  Google Scholar 

  25. 25

    Nelson, D. A. & Marler, P. Innate recognition of song in white-crowned sparrows: a role in selective vocal learning? Anim. Behav. 46, 806–808 (1993).

    Google Scholar 

  26. 26

    Marler, P. & Peters, S. The role of song phonology and syntax in vocal learning preferences in the song sparrow, Melospiza melodia. Ethology 77, 125–149 (1988).

    Google Scholar 

  27. 27

    Hultsch, H. & Todt, D. Song acquisition and acquisition constraints in the nightingale, Luscinia megarhynchos. Naturwissenschaften 76, 83–85 (1989).

    ADS  Google Scholar 

  28. 28

    Tchernichovski, O., Lints, T., Mitra, P. P. & Nottebohm, F. Vocal imitation in zebra finches is inversely related to model abundance. Proc. Natl Acad. Sci. USA 96, 12901–12904 (1999).

    ADS  CAS  PubMed  Google Scholar 

  29. 29

    Slater, P. J. B., Eales, L. A. & Clayton, N. S. Song learning in zebra finches (Taeniopygia guttata): progress and prospects. Adv. Study Behav. 18, 1–34 (1988).

    Google Scholar 

  30. 30

    Livingston, F. S., White, S. A. & Mooney, R. Slow NMDA-EPSCs at synapses critical for song development are not required for song learning in zebra finches. Nature Neurosci. 3, 482–488 (2000).

    CAS  Google Scholar 

  31. 31

    Baptista, L. F. & Petrinovich, L. Song development in the white-crowned sparrow: social factors and sex differences. Anim. Behav. 34, 1359–1371 (1986).

    Google Scholar 

  32. 32

    Nordby, J. C., Campbell, S. E., Burt, J. M. & Beecher, M. D. Social influences during song development in the song sparrow: a laboratory experiment simulating field conditions. Anim. Behav. 59, 1187–1197 (2000).

    CAS  Google Scholar 

  33. 33

    Whaling, C. S., Soha, J. A., Nelson, D. A., Lasley, B. & Marler, P. Photoperiod and tutor access affect the process of vocal learning. Anim. Behav. 56, 1075–1082 (1998).

    CAS  Google Scholar 

  34. 34

    Volman, S. F. Development of neural selectivity for birdsong during vocal learning. J. Neurosci. 13, 4737–4747 (1993).

    CAS  Google Scholar 

  35. 35

    Solis, M. M. & Doupe, A. J. Contributions of tutor and bird's own song experience to neural selectivity in the songbird anterior forebrain. J. Neurosci. 19, 4559–4584 (1999).

    CAS  Google Scholar 

  36. 36

    Schmidt, M. F. & Konishi, M. Gating of auditory responses in the vocal control system of awake songbirds. Nature Neurosci. 1, 513–518 (1998).

    CAS  Google Scholar 

  37. 37

    Dave, A. S., Yu, A. C. & Margoliash, D. Behavioral state modulation of auditory activity in a vocal motor system. Science 282, 2250–2254 (1998).

    ADS  CAS  Google Scholar 

  38. 38

    Pearson, K. G. Common principles of motor control in vertebrates and invertebrates. Annu. Rev. Neurosci. 16, 265–297 (1993).

    CAS  Google Scholar 

  39. 39

    Mello, C. V. & Clayton, D. F. Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J. Neurosci. 14, 6652–6666 (1994).

    CAS  Google Scholar 

  40. 40

    Stripling, R., Kruse, A. A. & Clayton, D. F. Development of song responses in the zebra finch caudomedial neostriatum: role of genomic and electrophysiological activities. J. Neurobiol. 48, 163–180 (2001).

    CAS  Google Scholar 

  41. 41

    Theunissen, F. E., Sen, K. & Doupe, A. J. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J. Neurosci. 20, 2315–2331 (2000).

    CAS  Google Scholar 

  42. 42

    Bolhuis, J. J., Zijlstra, G. G., den Boer-Visser, A. M. & Van Der Zee, E. A. Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proc. Natl Acad. Sci. USA 97, 2282–2285 (2000).

    ADS  CAS  PubMed  Google Scholar 

  43. 43

    Marler, P. & Doupe, A. J. Singing in the brain. Proc. Natl Acad. Sci. USA 97, 2965–2967 (2000).

    ADS  CAS  PubMed  Google Scholar 

  44. 44

    Basham, M. E., Nordeen, E. J. & Nordeen, K. W. Blockade of NMDA receptors in the anterior forebrain impairs sensory acquisition in the zebra finch. Neurobiol. Learn. Mem. 66, 295–304 (1996).

    CAS  Google Scholar 

  45. 45

    Scharff, C., Nottebohm, F. & Cynx, J. Conspecific and heterospecific song discrimination in male zebra finches with lesions in the anterior forebrain pathway. J. Neurobiol. 36, 81–90 (1998).

    CAS  Google Scholar 

  46. 46

    Burt, J. M., Lent, K. L., Beecher, M. D. & Brenowitz, E. A. Lesions of the anterior forebrain song control pathway in female canaries affect song perception in an operant task. J. Neurobiol. 42, 1–13 (2000).

    CAS  Google Scholar 

  47. 47

    Gentner, T. Q., Hulse, S. H., Bentley, G. E. & Ball, G. F. Individual vocal recognition and the effect of partial lesions to HVc on discrimination, learning, and categorization of conspecific song in adult songbirds. J. Neurobiol. 42, 117–133 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Nordeen, K. W. & Nordeen, E. J. Anatomical and synaptic substrates for avian song learning. J. Neurobiol. 33, 532–548 (1997).

    CAS  Google Scholar 

  49. 49

    Herrmann, K. & Arnold, A. P. The development of afferent projections to the robust archistriatal nucleus in male zebra finches: a quantitative electron microscopic study. J. Neurosci. 11, 2063–2074 (1991).

    CAS  Google Scholar 

  50. 50

    Iyengar, S., Viswanathan, S. S. & Bottjer, S. W. Development of topography within song control circuitry of zebra finches during the sensitive period for song learning. J. Neurosci. 19, 6037–6057 (1999).

    CAS  Google Scholar 

  51. 51

    Wallhausser-Franke, E., Nixdorf-Bergweiler, B. E. & DeVoogd, T. J. Song isolation is associated with maintaining high spine frequencies on zebra finch LMAN neurons. Neurobiol. Learn. Mem. 64, 25–35 (1995).

    CAS  Google Scholar 

  52. 52

    Iyengar, S. & Bottjer, S. Development of individual axon arbors in a thalamocortical circuit necessary for song learning in zebra finches. J. Neurosci. 22, 901–911 (2002).

    CAS  Google Scholar 

  53. 53

    Aamodt, S. M., Kozlowski, M. R., Nordeen, E. J. & Nordeen, K. W. Distribution and developmental change in [3H]MK-801 binding within zebra finch song nuclei. J. Neurobiol. 23, 997–1005 (1992).

    CAS  Google Scholar 

  54. 54

    Boettiger, C. A. & Doupe, A. J. Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning. Neuron 31, 809–818 (2001).

    CAS  Google Scholar 

  55. 55

    Price, P. H. Developmental determinants of structure in zebra finch song. J. Comp. Physiol. Psychol. 93, 268–277 (1979).

    Google Scholar 

  56. 56

    Williams, H. & Mehta, N. Changes in adult zebra finch song require a forebrain nucleus that is not necessary for song production. J. Neurobiol. 39, 14–28 (1999).

    CAS  Google Scholar 

  57. 57

    Brainard, M. S. & Doupe, A. J. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404, 762–766 (2000).

    ADS  CAS  Google Scholar 

  58. 58

    Akutagawa, E. & Konishi, M. Two separate areas of the brain differentially guide the development of a song control nucleus in the zebra finch. Proc. Natl Acad. Sci. USA 91, 12413–12417 (1994).

    ADS  CAS  PubMed  Google Scholar 

  59. 59

    Kittelberger, J. M. & Mooney, R. Lesions of an avian forebrain nucleus that disrupt song development alter synaptic connectivity and transmission in the vocal premotor pathway. J. Neurosci. 19, 9385–9398 (1999).

    CAS  Google Scholar 

  60. 60

    Jarvis, E. D. & Nottebohm, F. Motor-driven gene expression. Proc. Natl Acad. Sci. USA 94, 4097–4102 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Hessler, N. A. & Doupe, A. J. Singing-related neural activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches. J. Neurosci. 19, 10461–10481 (1999).

    CAS  Google Scholar 

  62. 62

    Troyer, T. & Doupe, A. J. An associational model of birdsong sensorimotor learning. I. Efference copy and the learning of song syllables. J. Neurophysiol. 84, 1204–1223 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Dave, A. S. & Margoliash, D. Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290, 812–816 (2000).

    ADS  CAS  Google Scholar 

  64. 64

    Nelson, D. A. & Marler, P. Selection-based learning in bird song development. Proc. Natl Acad. Sci USA 91, 10498–10501 (1994).

    ADS  CAS  PubMed  Google Scholar 

  65. 65

    West, M. J. & King, A. P. Female visual displays affect the development of male song in the cowbird. Nature 334, 244–246 (1988).

    ADS  CAS  Google Scholar 

  66. 66

    Jarvis, E. D., Scharff, C., Grossman, M. R., Ramos, J. A. & Nottebohm, F. For whom the bird sings: context-dependent gene expression. Neuron 21, 775–788 (1998).

    CAS  Google Scholar 

  67. 67

    Hessler, N. A. & Doupe, A. J. Social context modulates singing-related neural activity in the songbird forebrain. Nature Neurosci. 2, 209–211 (1999).

    CAS  Google Scholar 

  68. 68

    Pytte, C. L. & Suthers, R. A. Sensitive period for sensorimotor integration during vocal motor learning. J. Neurobiol. 42, 172–189 (2000).

    CAS  Google Scholar 

  69. 69

    Williams, H. & McKibben, J. R. Changes in stereotyped central motor patterns controlling vocalization are induced by peripheral nerve injury. Behav. Neural Biol. 57, 67–78 (1992).

    CAS  Google Scholar 

  70. 70

    Hough, G. & Volman, S. Short-term and long-term effects of vocal distortion on song maintenance in zebra finches. J. Neurosci. 22, 1177–1186 (2002).

    CAS  Google Scholar 

  71. 71

    Brainard, M. S. & Doupe, A. J. Auditory feedback in learning and maintenance of vocal behavior. Nature Rev. Neurosci. 1, 31–40 (2000).

    CAS  Google Scholar 

  72. 72

    Nordeen, K. W. & Nordeen, E. J. Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behav. Neural Biol. 57, 58–66 (1992).

    CAS  Google Scholar 

  73. 73

    Leonardo, A. & Konishi, M. Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399, 466–470 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Okanoya, K. & Yamaguchi, A. Adult Bengalese finches (Lonchura striata var. domestica) require real-time auditory feedback to produce normal song syntax. J. Neurobiol. 33, 343–356 (1997).

    CAS  Google Scholar 

  75. 75

    Woolley, S. M. & Rubel, E. W. Bengalese finches Lonchura Striata domestica depend upon auditory feedback for the maintenance of adult song. J. Neurosci. 17, 6380–6390 (1997).

    CAS  Google Scholar 

  76. 76

    Lombardino, A. J. & Nottebohm, F. Age at deafening affects the stability of learned song in adult male zebra finches. J. Neurosci. 20, 5054–5064 (2000).

    CAS  Google Scholar 

  77. 77

    Brainard, M. S. & Doupe, A. J. Post-learning consolidation of the motor program for birdsong: stabilizing effects of age and anterior forebrain lesions. J. Neurosci. 21, 2501–2517 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Stickgold, R., Hobson, J. A., Fosse, R. & Fosse, M. Sleep, learning, and dreams: off-line memory reprocessing. Science 294, 1052–1057 (2001).

    ADS  CAS  Google Scholar 

  79. 79

    Nottebohm, F., Nottebohm, M. E., Crane, L. & Wingfield, J. C. Seasonal change in gonadal hormone levels of adult male canaries and their relation to song. Behav. Neural Biol. 47, 197–211 (1987).

    CAS  Google Scholar 

  80. 80

    Bohner, J., Chaiken, M. L., Ball, G. F. & Marler, P. Song acquisition in photosensitive and photorefractory male European starlings. Horm. Behav. 24, 582–594 (1990).

    CAS  Google Scholar 

  81. 81

    Arnold, A. P., Bottjer, S. W., Brenowitz, E. A., Nordeen, E. J. & Nordeen, K. W. Sexual dimorphisms in the neural vocal control system in song birds: ontogeny and phylogeny. Brain Behav. Evol. 28, 22–31 (1986).

    CAS  Google Scholar 

  82. 82

    Holloway, C. C. & Clayton, D. F. Estrogen synthesis in the male brain triggers development of the avian song control pathway in vitro. Nature Neurosci. 4, 170–175 (2001).

    CAS  Google Scholar 

  83. 83

    Korsia, S. & Bottjer, S. W. Chronic testosterone treatment impairs vocal learning in male zebra finches during a restricted period of development. J. Neurosci. 11, 2362–2371 (1991).

    CAS  Google Scholar 

  84. 84

    Whaling, C. S., Nelson, D. A. & Marler, P. Testosterone-induced shortening of the storage phase of song development in birds interferes with vocal learning. Dev. Psychobiol. 28, 367–376 (1995).

    CAS  Google Scholar 

  85. 85

    Marler, P., Peters, S., Ball, G. F., Dufty, A. M. Jr & Wingfield, J. C. The role of sex steroids in the acquisition and production of birdsong. Nature 336, 770–772 (1988).

    ADS  CAS  Google Scholar 

  86. 86

    Bottjer, S. W. & Hewer, S. J. Castration and antisteroid treatment impair vocal learning in male zebra finches. J. Neurobiol. 23, 337–353 (1992).

    CAS  Google Scholar 

  87. 87

    Ball, G. F. in The Design of Animal Communication (eds Hauser, M.D. & Konishi, M.) 215–253 (MIT Press, Cambridge, MA, 1999).

    Google Scholar 

  88. 88

    Li, X.-C., Jarvis, E. D., Alvarez-Borda, B., Lim, D. A. & Nottebohm, F. A relationship between behavior, neurotrophin expression, and new neuron survival. Proc. Natl Acad. Sci. USA 97, 8584–8589 (2000).

    ADS  CAS  PubMed  Google Scholar 

  89. 89

    Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–336 (1965).

    CAS  Google Scholar 

  90. 90

    Goldman, S. A. & Nottebohm, F. Neuronal production, migration, and differentiation in a vocal control nucleus in the adult female canary brain. Proc. Natl Acad. Sci. USA 80, 2390–2394 (1983).

    ADS  CAS  PubMed  Google Scholar 

  91. 91

    Kirn, J. R., Alvarez-Buylla, A. & Nottebohm, F. Production and survival of projection neurons in a forebrain vocal center of adult male canaries. J. Neurosci. 11, 1756–1762 (1991).

    CAS  Google Scholar 

  92. 92

    Alvarez-Buylla, A. & Kirn, J. R. Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J. Neurobiol. 33, 585–601 (1997).

    CAS  Google Scholar 

  93. 93

    Gould, E. & Gross, C. G. Neurogenesis in adult mammals: some progress and problems. J. Neurosci. 22, 619–623 (2002).

    CAS  Google Scholar 

  94. 94

    Scharff, C., Kirn, J. R., Grossman, M., Macklis, J. D. & Nottebohm, F. Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron 25, 481–492 (2000).

    CAS  Google Scholar 

  95. 95

    Rasika, S., Alvarez-Buylla, A. & Nottebohm, F. BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. Neuron 22, 53–62 (1999).

    CAS  Google Scholar 

  96. 96

    Brown, S. D., Johnson, F. & Bottjer, S. W. Neurogenesis in adult canary telencephalon is independent of gonadal hormone levels. J. Neurosci. 13, 2024–2032 (1993).

    CAS  Google Scholar 

  97. 97

    Wang, N., Aviram, R. & Kirn, J. R. Deafening alters neuron turnover within the telencephalic motor pathway for song control in adult zebra finches. J. Neurosci. 19, 10554–10561 (1999).

    CAS  Google Scholar 

  98. 98

    Tramontin, A. D. & Brenowitz, E. A. A field study of seasonal neuronal incorporation into the song control system of a songbird that lacks adult song learning. J. Neurobiol. 40, 316–326 (1999).

    CAS  Google Scholar 

  99. 99

    Lewicki, M. & Konishi, M. Mechanisms underlying the sensitivity of songbird forebrain neurons to temporal order. Proc. Natl Acad. Sci. USA 92, 5582–5586 (1995).

    ADS  CAS  PubMed  Google Scholar 

  100. 100

    Mooney, R. Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch. J. Neurosci. 20, 5420–5436 (2000).

    CAS  Google Scholar 

Download references


We are grateful to M. Kao for thoughtful comments on the manuscript and help with figures. Work in the authors' laboratories is supported by the NIH, the Sandler Family Supporting Foundation, NARSAD and the Grable Foundation, and the Kirsch Foundation.

Author information



Corresponding author

Correspondence to Michael S. Brainard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brainard, M., Doupe, A. What songbirds teach us about learning. Nature 417, 351–358 (2002). https://doi.org/10.1038/417351a

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing