Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Non-mammalian models for studying neural development and function

Abstract

Early neuroscientists scoured the animal kingdom for the ideal preparation with which to study specific problems of interest. Today, non-mammalian nervous systems continue to provide ideal platforms for the study of fundamental problems in neuroscience. Indeed, the peculiarities of body plan and nervous systems that have evolved to carry out precise tasks in unique ecological niches enable investigators not only to pose specific scientific questions, but also to uncover principles that are general to all nervous systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Furshpan, E. J. & Potter, D. D. Transmission at the giant motor synapses of the crayfish. J. Physiol. 145, 289–325 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuffler, S. W., Nicholls, J. G. & Orkand, R. K. Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 768–787 (1966).

    Article  CAS  PubMed  Google Scholar 

  3. Kuffler, S. W. Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc. R. Soc. Lond. B 168, 1–21 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dudel, J. & Kuffler, S. W. Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. 155, 543–562 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lange, D., Hartline, H. K. & Ratliff, F. Inhibitory interaction in the retina: techniques of experimental and theoretical analysis. Ann. NY Acad. Sci. 128, 955–971 (1966).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hamburger, V. Ontogeny of neuroembryology. J. Neurosci. 8, 3535–3540 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hamburger, V. History of the discovery of neuronal death in embryos. J. Neurobiol. 23, 1116–1123 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Hamburger, V. The history of the discovery of the nerve growth factor. J. Neurobiol. 24, 893–897 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Gaze, R. M. & Keating, M. J. The depth distribution of visual units in the tectum of the frog following regeneration of the optic nerve. J. Physiol. 200, 128P–129P (1969).

  11. Gaze, R. M. & Sharma, S. C. Axial differences in the reinnervation of the goldfish optic tectum by regenerating optic nerve fibres. Exp. Brain Res. 10, 171–181 (1970).

    Article  CAS  PubMed  Google Scholar 

  12. Jacobson, M. & Gaze, R. M. Selection of appropriate tectal connections by regenerating optic nerve fibers in adult goldfish. Exp. Neurol. 13, 418–430 (1965).

    Article  CAS  PubMed  Google Scholar 

  13. Baylor, D. A. & Fuortes, M. G. Electrical responses of single cones in the retina of the turtle. J. Physiol. 207, 77–92 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baylor, D. A., Fuortes, M. G. & O'Bryan, P. M. Receptive fields of cones in the retina of the turtle. J. Physiol. 214, 265–294 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baylor, D. A. & Lamb, T. D. Local effects of bleaching in retinal rods of the toad. J. Physiol. 328, 49–71 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baylor, D. A., Matthews, G. & Nunn, B. J. Location and function of voltage-sensitive conductances in retinal rods of the salamander, Ambystoma tigrinum. J. Physiol. 354, 203–223 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carr, C. E. & Konishi, M. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10, 3227–3246 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carr, C. E. & Konishi, M. Axonal delay lines for time measurement in the owl's brainstem. Proc. Natl Acad. Sci. USA 85, 8311–8315 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Volman, S. F. & Konishi, M. Spatial selectivity and binaural responses in the inferior colliculus of the great horned owl. J. Neurosci. 9, 3083–3096 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carr, C. E. Time coding in electric fish and barn owls. Brain Behav. Evol. 28, 122–133 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Konishi, M. The neural algorithm for sound localization in the owl. Harvey Lect. 86, 47–64 (1990).

    PubMed  Google Scholar 

  22. Faure, P. A. & Hoy, R. R. The sounds of silence: cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera; Tettigoniidae). J. Comp. Physiol. A 186, 129–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Buschbeck, E., Ehmer, B. & Hoy, R. Chunk versus point sampling: visual imaging in a small insect. Science 286, 1178–1180 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Cocroft, R. B., Tieu, T. D., Hoy, R. R. & Miles, R. N. Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J. Comp. Physiol. A 186, 695–705 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Mason, A. C., Oshinsky, M. L. & Hoy, R. R. Hyperacute directional hearing in a microscale auditory system. Nature 410, 686–690 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Farris, H. E. & Hoy, R. R. Two-tone suppression in the cricket, Eunemobius carolinus (Gryllidae, Nemobiinae). J. Acoust. Soc. Am. 111, 1475–1485 (2002).

    Article  ADS  PubMed  Google Scholar 

  27. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Compte, A., Brunel, N., Goldman-Rakic, P. S. & Wang, X. J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. The autapse: a simple illustration of short-term analog memory storage by tuned synaptic feedback. J. Comput. Neurosci. 9, 171–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Aksay, E., Gamkrelidze, G., Seung, H. S., Baker, R. & Tank, D. W. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nature Neurosci. 4, 184–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Aksay, E., Baker, R., Seung, H. S. & Tank, D. W. Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations. J. Neurophysiol. 84, 1035–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y. & Suga, N. Corticofugal amplification of subcortical responses to single tone stimuli in the mustached bat. J. Neurophysiol. 78, 3489–3492 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, E. & Suga, N. Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc. Natl Acad. Sci. USA 95, 12663–12670 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lorent, K., Liu, K. S., Fetcho, J. R. & Granato, M. The zebrafish space cadet gene controls axonal pathfinding of neurons that modulate fast turning movements. Development 128, 2131–2142 (2001).

    CAS  PubMed  Google Scholar 

  36. Ritter, D. A., Bhatt, D. H. & Fetcho, J. R. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. J. Neurosci. 21, 8956–8965 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kreiman, G., Krahe, R., Metzner, W., Koch, C. & Gabbiani, F. Robustness and variability of neuronal coding by amplitude-sensitive afferents in the weakly electric fish eigenmannia. J. Neurophysiol. 84, 189–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Lewis, J. E. & Maler, L. Neuronal population codes and the perception of object distance in weakly electric fish. J. Neurosci. 21, 2842–2850 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gabbiani, F., Mo, C. & Laurent, G. Invariance of angular threshold computation in a wide-field looming-sensitive neuron. J. Neurosci. 21, 314–329 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paydar, S., Doan, C. A. & Jacobs, G. A. Neural mapping of direction and frequency in the cricket cercal sensory system. J. Neurosci. 19, 1771–1781 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jacobs, G. A. & Theunissen, F. E. Extraction of sensory parameters from a neural map by primary sensory interneurons. J. Neurosci. 20, 2934–2943 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Calabrese, R. L. Cellular, synaptic, network, and modulatory mechanisms involved in rhythm generation. Curr. Opin. Neurobiol. 8, 710–717 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Grillner, S., Wallen, P., Brodin, L. & Lansner, A. Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annu. Rev. Neurosci. 14, 169–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Pierce-Shimomura, J. T., Morse, T. M. & Lockery, S. R. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J. Neurosci. 19, 9557–9569 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rose, J. K. & Rankin, C. H. Analyses of habituation in Caenorhabditis elegans. Learn Mem. 8, 63–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Tobias, M. L., Viswanathan, S. S. & Kelley, D. B. Rapping, a female receptive call, initiates male-female duets in the South African clawed frog. Proc. Natl Acad. Sci. USA 95, 1870–1875 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Sengupta, P., Chou, J. H. & Bargmann, C. I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899–909 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Sengupta, P., Colbert, H. A. & Bargmann, C. I. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell 79, 971–980 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Gelperin, A. Oscillatory dynamics and information processing in olfactory systems. J. Exp. Biol. 202, 1855–1864 (1999).

    PubMed  Google Scholar 

  51. Ermentrout, B., Wang, J. W., Flores, J. & Gelperin, A. Model for olfactory discrimination and learning in Limax procerebrum incorporating oscillatory dynamics and wave propagation. J. Neurophysiol. 85, 1444–1452 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Cooke, I. R. & Gelperin, A. In vivo recordings of spontaneous and odor-modulated dynamics in the Limax olfactory lobe. J. Neurobiol. 46, 126–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Konopka, R. J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Konopka, R. J. Genetics of biological rhythms in Drosophila. Annu. Rev. Genet. 21, 227–236 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Allada, R., Emery, P., Takahashi, J. S. & Rosbash, M. Stopping time: the genetics of fly and mouse circadian clocks. Annu. Rev. Neurosci. 24, 1091–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Getting, P. A. & Dekin, M. S. Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator. J. Neurophysiol. 53, 466–480 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. Getting, P. A. Emerging principles governing the operation of neural networks. Annu. Rev. Neurosci. 12, 185–204 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Marder, E. & Hooper, S. L. in Model Neural Networks and Behavior (ed. Selverston, A. I.) 319–337 (Plenum, New York, 1985).

    Book  Google Scholar 

  59. Harris-Warrick, R. M. & Marder, E. Modulation of neural networks for behavior. Annu. Rev. Neurosci. 14, 39–57 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eve Marder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marder, E. Non-mammalian models for studying neural development and function. Nature 417, 318–321 (2002). https://doi.org/10.1038/417318a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/417318a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing