Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The dynamics of actin-based motility depend on surface parameters

Abstract

In cells, actin polymerization at the plasma membrane is induced by the recruitment of proteins such as the Arp2/3 complex, and the zyxin/VASP complex1,2,3. The physical mechanism of force generation by actin polymerization has been described theoretically using various approaches4,5,6, but lacks support from experimental data. By the use of reconstituted motility medium7, we find that the Wiskott–Aldrich syndrome protein8,9 (WASP) subdomain, known as VCA, is sufficient to induce actin polymerization and movement when grafted on microspheres. Changes in the surface density of VCA protein or in the microsphere diameter markedly affect the velocity regime, shifting from a continuous to a jerky movement resembling that of the mutated ‘hopping’ Listeria10. These results highlight how simple physical parameters such as surface geometry and protein density directly affect spatially controlled actin polymerization, and play a fundamental role in actin-dependent movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three main regimes of motion of the beads as a function of bead diameter.
Figure 2: The characteristic behaviour of a 4.5-µm bead at a saturated VCA surface density Cs.
Figure 3: The linear dependence between the time of symmetry breaking and the bead diameter.

Similar content being viewed by others

References

  1. Welch, M. D., Mallavarapu, A., Rosenblatt, J. & Mitchison, T. J. Actin dynamics in vivo. Curr. Opin. Cell. Biol. 9, 54–61 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. Renfranz, P. J. & Beckerle, M. C. Doing (F/L)PPPPS: EVH1 domains and their proline-rich partners in cell polarity and migration. Curr. Opin. Cell Biol. 14, 88–103 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Pantaloni, D., Le Clainche, C. & Carlier, M.-F. Mechanism of actin-based motility. Science 292, 1502–1506 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Mogilner, A. & Oster, G. Cell motility driven by actin polymerisation. Biophys. J. 71, 3030–3045 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerbal, F., Chaikin, P., Rabin, Y. & Prost, J. An elastic analysis of Listeria monocytogenes propulsion. Biophys. J. 79, 2259–2275 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carlsson, A. E. Growth of branched actin networks against obstacles. Biophys. J. 81, 1907–1923 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M.-F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP regulates the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998)

    Article  CAS  PubMed  Google Scholar 

  9. Takenawa, T. & Miki, H. WASp and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809 (2001)

    CAS  PubMed  Google Scholar 

  10. Lasa, I. et al. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 16, 1531–1540 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989)

    Article  CAS  PubMed  Google Scholar 

  12. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerisation is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–268 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Egile, C. et al. Activation of Cdc42 effector N-WASP by the Shigella IcsA protein promotes actin nucleation by Arp2/3 complex resulting in bacterial actin-based motility. J. Cell. Biol. 146, 1319–1332 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin polymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanchoin, L. et al. Direct observation of dendritic actin filaments networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M.-F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell Biol. 2, 385–391 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Fradelizi, J. et al. ActA and human zyxin harbour Arp2/3-independent actin-polymerisation activity. Nature Cell Biol. 3, 699–707 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Cameron, L. A., Svitkina, T. M., Vignjevic, D., Theriot, J. A. & Borisy, G. G. Dendritic organization of actin comet tails. Curr. Biol. 11, 130–135 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerisation. Proc. Natl Acad. Sci. USA 96, 4908–4913 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Noireaux, V. et al. Growing an actin gel on spherical surfaces. Biophys. J. 78, 1643–1654 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giardini, P. A. & Theriot, J. A. Effects of intermediate filaments on actin-based motility of Listeria monocytogenes. Biophys. J. 81, 3193–3203 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gerbal, F. et al. On the ‘Listeria’ propulsion mechanism. Pramana J. Phys. 53, 155–170 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Kuo, S. C. & McGrath, L. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407, 1026–1029 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Rutenberg, A. D. & Grant, M. Curved tails in polymerization-based bacterial motility. Phys. Rev. E 64, 21904–21907 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72–74 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Oudenaarden, A. & Theriot, J. A. Cooperative symmetry-breaking by actin polymerisation in a model for cell motility. Nature Cell Biol. 1, 493–499 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. Nascentfocal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 89–100 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Plastino for discussions and the purification of VCA proteins, and F. Castellano and P. Chavrier for the gift of the plasmid encoding VCA. Theoretical discussions were conducted by J. Prost. We thank D. Didry for the purification of Arp2/3, ADF-cofilin, and actin, and R. Boujemaa for the purification of the capping protein. We thank H. Boukellal for help in determining the VCA concentration on the beads, E. Paluch for helping in analysing the videos and K. Sekimoto and D. Pantaloni for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marie-France Carlier or Cécile Sykes.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernheim-Groswasser, A., Wiesner, S., Golsteyn, R. et al. The dynamics of actin-based motility depend on surface parameters. Nature 417, 308–311 (2002). https://doi.org/10.1038/417308a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417308a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing