Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A reconstruction of the initial conditions of the Universe by optimal mass transportation

Abstract

Reconstructing the density fluctuations in the early Universe that evolved into the distribution of galaxies we see today is a challenge to modern cosmology1. An accurate reconstruction would allow us to test cosmological models by simulating the evolution starting from the reconstructed primordial state and comparing it to observations. Several reconstruction techniques have been proposed2,3,4,5,6,7,8,9, but they all suffer from lack of uniqueness because the velocities needed to produce a unique reconstruction usually are not known. Here we show that reconstruction can be reduced to a well-determined problem of optimization, and present a specific algorithm that provides excellent agreement when tested against data from N-body simulations. By applying our algorithm to the redshift surveys now under way10, we will be able to recover reliably the properties of the primeval fluctuation field of the local Universe, and to determine accurately the peculiar velocities (deviations from the Hubble expansion) and the true positions of many more galaxies than is feasible by any other method.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N-body simulation output (present epoch) used for testing our reconstruction method.
Figure 2: Tests of MAK reconstructions of the lagrangian positions, using the data shown in Fig. 1.
Figure 3: Reconstruction test in redshift space with the same data as for the real-space reconstruction tested in the upper left histogram of Fig. 2.

Similar content being viewed by others

References

  1. Narayanan, V. K. & Croft, R. A. Recovering the primordial density fluctuations: a comparison of methods. Astrophys. J. 515, 471–486 (1999)

    Article  ADS  Google Scholar 

  2. Peebles, P. J. E. Tracing galaxy orbits back in time. Astrophys. J. 344, L53–L56 (1989)

    Article  ADS  Google Scholar 

  3. Weinberg, D. H. Reconstructing primordial density fluctuations—I. Method. Mon. Not. R. Astron. Soc. 254, 315–342 (1992)

    Article  ADS  Google Scholar 

  4. Nusser, A. & Dekel, A. Tracing large-scale fluctuations back in time. Astrophys. J. 391, 443–452 (1992)

    Article  ADS  Google Scholar 

  5. Croft, R. A. & Gaztañaga, E. Reconstruction of cosmological density and velocity fields in the Lagrangian Zel'dovich approximation. Mon. Not. R. Astron. Soc. 285, 793–805 (1997)

    Article  ADS  Google Scholar 

  6. Nusser, A. & Branchini, E. On the least action principle in cosmology. Mon. Not. R. Astron. Soc. 313, 587–595 (2000)

    Article  ADS  Google Scholar 

  7. Goldberg, D. M. & Spergel, D. N. Using perturbative least action to recover cosmological initial conditions. Astrophys. J. 544, 21–29 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Valentine, H., Saunders, W. & Taylor, A. Reconstructing the IRAS point source catalog redshift survey with a generalized PIZA. Mon. Not. R. Astron. Soc. 319, L13–L17 (2000)

    Article  ADS  Google Scholar 

  9. Branchini, E., Eldar, A. & Nusser, A. Peculiar velocity reconstruction with fast action method: tests on mock redshift surveys. Mon. Not. R. Astron. Soc. (submitted); preprint astro-ph/0110618 at 〈http://xxx.lanl.gov〉 (2001)

  10. Frieman, J. A. & Szalay, A. S. Large-scale structure: entering the precision era. Phys. Rep. 333–334, 215–232 (2000)

    Article  ADS  Google Scholar 

  11. Bertschinger, E. & Dekel, A. Recovering the full velocity and density fields from large-scale redshift-distance samples. Astrophys. J. 336, L5–L8 (1989)

    Article  ADS  Google Scholar 

  12. Zel'dovich, Ya. B. Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84–89 (1970)

    ADS  Google Scholar 

  13. Moutarde, F., Alimi, J.-M., Bouchet, F. R., Pellat, R. & Ramani, A. Precollapse scale invariance in gravitational instability. Astrophys. J. 382, 377–381 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Buchert, T. Lagrangian theory of gravitational instability of Friedman-Lemaitre cosmologies and the Zel'dovich approximation. Mon. Not. R. Astron. Soc. 254, 729–737 (1992)

    Article  ADS  Google Scholar 

  15. Munshi, D., Sahni, V. & Starobinsky, A. Nonlinear approximations to gravitational instability: a comparison in the quasi-linear regime. Astrophys. J. 436, 517–527 (1994)

    Article  ADS  Google Scholar 

  16. Catelan, P. Lagrangian dynamics in non-flat universes and non-linear gravitational evolution. Mon. Not. R. Astron. Soc. 276, 115–124 (1995)

    ADS  Google Scholar 

  17. Gurbatov, S. & Saichev, A. I. Probability distribution and spectra of potential hydrodynamic turbulence. Radiophys. Quant. Electr. 27, 303–313 (1984)

    Article  ADS  Google Scholar 

  18. Shandarin, S. F. & Zel'dovich, Ya. B. The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61, 185–220 (1989)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Vergassola, M., Dubrulle, B., Frisch, U. & Noullez, A. Burgers' equation, Devil's stair-cases and the mass distribution for large-scale structures. Astron. Astrophys. 289, 325–356 (1994)

    ADS  Google Scholar 

  20. Ampère, A.-M. Mémoire concernant l'Application de la Théorie exposée dans le XVIIe Cahier du Journal de l'École Polytechnique, à l'Intégration des Équations aux différentielles partielles du premier et du second ordre. J. École. R. Polytech. 11, 1–188 (1820)

    Google Scholar 

  21. Brenier, Y. Décomposition polaire et réarrangement monotone des champs de vecteurs. C.R. Acad. Sci. 305, 805–808 (1987)

    MathSciNet  MATH  Google Scholar 

  22. Gangbo, W. & McCann, R. J. The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MathSciNet  Google Scholar 

  23. Benamou, J.-D. & Brenier, Y. The optimal time-continuous mass transport problem and its augmented Lagrangian numerical resolution. Numer. Math. 84, 375–393 (2000) also at 〈http://www.inria.fr/rrrt/rr-3356.html

    Article  MathSciNet  Google Scholar 

  24. Monge, G. Mémoire sur la théorie des déblais et des remblais. Hist. Acad. R. Sci. Paris, 666–704 (1781)

  25. Kantorovich, L. On the translocation of masses. C.R. Acad. Sci. URSS 37, 199–201 (1942)

    MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R. T. Convex Analysis (Princeton Univ. Press, 1970)

    Book  Google Scholar 

  27. Hénon, M. A mechanical model for the transportation problem. C.R. Acad. Sci. 321, 741–745 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Balinski, M. L. A competitive (dual) simplex method for the assignment problem. Math. Program. 34, 125–141 (1986)

    Article  MathSciNet  Google Scholar 

  29. Couchman, H. M. P., Thomas, P. A. & Pearce, F. R. Hydra: an adaptive-mesh implementation of P3M-SPH. Astrophys. J. 452, 797–813 (1995)

    Article  ADS  Google Scholar 

  30. Arnold, V. I. Mathematical Methods of Classical Mechanics (Springer, Berlin, 1978)

    Book  Google Scholar 

Download references

Acknowledgements

Special thanks are due to E. Branchini (observational and conceptual aspects), Y. Brenier (mathematical aspects) and M. Hénon (algorithmic aspects and the handing of spatial periodicity and of scatter plots). We also thank J. Bec, H. Frisch, B. Gladman, L. Moscardini, A. Noullez, C. Porciani, M. Rees, E. Spiegel, A. Starobinsky and P. Thomas for comments. This work was supported by the BQR program of Observatoire de la Côte d'Azur, by the TMR program of the European Union (U.F., R.M.), by MIUR (S.M.), by the French Ministry of Education, the McDonnel Foundation, the Russian RFBR and INTAS (A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uriel Frisch.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frisch, U., Matarrese, S., Mohayaee, R. et al. A reconstruction of the initial conditions of the Universe by optimal mass transportation. Nature 417, 260–262 (2002). https://doi.org/10.1038/417260a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417260a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing