Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of glutamate receptor desensitization

Abstract

Ligand-gated ion channels transduce chemical signals into electrical impulses by opening a transmembrane pore in response to binding one or more neurotransmitter molecules. After activation, many ligand-gated ion channels enter a desensitized state in which the neurotransmitter remains bound but the ion channel is closed. Although receptor desensitization is crucial to the functioning of many ligand-gated ion channels in vivo, the molecular basis of this important process has until now defied analysis. Using the GluR2 AMPA-sensitive glutamate receptor, we show here that the ligand-binding cores form dimers and that stabilization of the intradimer interface by either mutations or allosteric modulators reduces desensitization. Perturbations that destabilize the interface enhance desensitization. Receptor activation involves conformational changes within each subunit that result in an increase in the separation of portions of the receptor that are linked to the ion channel. Our analysis defines the dimer interface in the resting and activated state, indicates how ligand binding is coupled to gating, and suggests modes of dimer–dimer interaction in the assembled tetramer. Desensitization occurs through rearrangement of the dimer interface, which disengages the agonist-induced conformational change in the ligand-binding core from the ion channel gate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The L483Y mutation and CTZ promote dimerization and block desensitization.
Figure 2: The L483Y mutation and CTZ stabilize the GluR2 S1S2J dimer.
Figure 3: Disruption of the Tyr 483 binding site at the dimer interface increases the extent of receptor desensitization and shifts the S1S2J monomer–dimer equilibrium towards monomer.
Figure 4: Introduction of aspartate at position 754 accelerates desensitization and reveals a new, ‘lateral’ mode by which the ligand-binding cores can interact.
Figure 5: Agonist-induced conformational changes in the dimer and gating model.

Similar content being viewed by others

References

  1. Jones, M. V. & Westbrook, G. L. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 19, 96–101 (1996)

    Article  CAS  PubMed  Google Scholar 

  2. Clark, R. B., Knoll, B. J. & Barber, R. Partial agonists and G-protein coupled receptor desensitization. Trends Pharmacol. Sci. 20, 279–286 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Katz, B. & Thesleff, S. A study of the ‘desensitization’ produced by acetylcholine at the motor end-plate. J. Physiol. (Lond.) 138, 63–80 (1957)

    Article  CAS  Google Scholar 

  4. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999)

    CAS  PubMed  Google Scholar 

  5. Mayer, M. L. & Partin, K. M. in Excitatory Amino Acids and Synaptic Function (eds Wheal, H. & Thomson, A.) 89–98 (Academic, New York, 1995)

    Google Scholar 

  6. Kiskin, N. I., Krishtal, O. A. & Tsyndrenko, A. Y. Excitatory amino acid receptors in hippocampal neurons: kainate fails to desensitize them. Neurosci. Lett. 63, 225–230 (1986)

    Article  CAS  PubMed  Google Scholar 

  7. Mayer, M. L. & Vyklicky, L. Concanavalin A selectively reduces desensitization of mammalian neuronal quisqualate receptors. Proc. Natl Acad. Sci. USA 86, 1411–1415 (1989)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trussell, L. O., Thio, L. L., Zorumski, C. F. & Fischbach, G. D. Rapid desensitization of glutamate receptors in vertebrate central neurons. Proc. Natl Acad. Sci. USA 85, 4562–4566 (1988)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colquhoun, D., Jonas, P. & Sakmann, B. Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurons of rat hippocampal slices. J. Physiol. (Lond.) 458, 261–287 (1992)

    Article  CAS  Google Scholar 

  10. Hausser, M. & Roth, A. Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J. Physiol. (Lond.) 501, 77–95 (1997)

    Article  Google Scholar 

  11. Hall, R. A., Kessler, M., Quan, A., Ambros-Ingerson, J. & Lynch, G. Cyclothiazide decreases [3H]AMPA binding to rat brain membranes: evidence that AMPA receptor desensitization increases agonist affinity. Brain Res. 628, 345–348 (1993)

    Article  CAS  PubMed  Google Scholar 

  12. Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Laube, B., Kuhse, J. & Betz, H. Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci. 18, 2954–2961 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stern-Bach, Y., Russo, S., Neuman, M. & Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Patneau, D. K., Vyklicky, L. & Mayer, M. L. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J. Neurosci. 13, 3496–3509 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stern-Bach, Y. et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357 (1994)

    Article  CAS  PubMed  Google Scholar 

  17. Kuusinen, A., Arvola, M. & Keinänen, K. Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J. 14, 6327–6332 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Armstrong, N., Sun, Y., Chen, G.-Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Sommer, B. et al. Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Gallivan, J. P. & Dougherty, D. A. Cation-pi interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cordi, A. A. et al. Identification and characterization of the isomers of cyclothiazide responsible for potentiating AMPA current. Bioorg. Med. Chem. Lett. 4, 1957–1960 (1994)

    Article  CAS  Google Scholar 

  23. Partin, K. M. Domain interactions regulating AMPA receptor desensitization. J. Neurosci. 21, 1939–1948 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Partin, K. M., Bowie, D. & Mayer, M. L. Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron 14, 833–843 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. Partin, K. M., Fleck, M. W. & Mayer, M. L. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J. Neurosci. 16, 6634–6647 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mayer, M. L., Olson, R. & Gouaux, E. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J. Mol. Biol. 311, 815–836 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Regalado, M. P., Villarroel, A. & Lerma, J. Intersubunit cooperativity in the NMDA receptor. Neuron 32, 1085–1096 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Wo, Z. G. & Oswald, R. E. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 18, 161–168 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Wood, M. W., VanDongen, H. M. & VanDongen, A. M. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc. Natl Acad. Sci. USA 92, 4882–4886 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Chen, G.-Q., Cui, C., Mayer, M. L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Panchenko, V. A., Glasser, C. R. & Mayer, M. L. Structural similarities between glutamate receptors channels and K+ channels examined by scanning mutagenesis. J. Gen. Physiol. 117, 345–360 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goodsell, D. S. & Olson, A. J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. Kuusinen, A., Abele, R., Madden, D. R. & Keinänen, K. Oligomerization and ligand-binding properties of the ectodomain of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluRD. J. Biol. Chem. 274, 28937–28943 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Ayolan, G. & Stern-Bach, Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete protein–protein interactions. Neuron 31, 103–113 (2001)

    Article  Google Scholar 

  36. Abele, R., Keinänen, K. & Madden, D. R. Agonist-induced isomerization in a glutamate receptor ligand-binding domain: a kinetic and mutagenic analysis. J. Biol. Chem. 275, 21355–21363 (2000)

    Article  CAS  PubMed  Google Scholar 

  37. Nagarajan, N., Quast, C., Boxall, A. R., Shahid, M. & Rosenmund, C. Mechanism and impact of allosteric AMPA receptor modulation by the ampakine CX546. Neuropharmacology 41, 650–663 (2001)

    Article  CAS  PubMed  Google Scholar 

  38. Otwinowsky, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  Google Scholar 

  39. Navaza, J. AMoRe: An automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  40. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

  41. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997)

    Article  CAS  PubMed  Google Scholar 

  42. Kleywegt, G. J. & Jones, T. A. A super position. CCP4/EST-EACBM Newsl. Prot. Crystallogr., 9–14 (1994)

  43. Collaborative Computational Project, Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  44. Ansevin, A. T., Roark, D. E. & Yphantis, D. A. Improved ultracentrifuge cells for high-speed sedimentation equilibrium studies with interference optics. Anal. Biochem. 34, 237–261 (1970)

    Article  CAS  PubMed  Google Scholar 

  45. Johnson, M. L., Correia, J. J., Yphantiz, D. A. & Halvorson, H. R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys. J. 36, 575–588 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Lu and C. Glasser for technical assistance, J. Lidestri for maintenance of the X-ray laboratory at Columbia University, and W. N. Zagotta and S. Harrison for helpful discussions. Synchrotron diffraction data were collected at the x4a beamline at the National Synchrotron Light Source. The XL-I ultracentrifuge was obtained with funds provided by the NIH. This work was supported by the Klingenstein Foundation (E.G.), the National Alliance for Research on Schizophrenia and Depression (E.G) and the NIH (E.G., M.L.M.). E.G. is also an assistant investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Mayer or Eric Gouaux.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Olson, R., Horning, M. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002). https://doi.org/10.1038/417245a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417245a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing