Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport

Abstract

Cytosolic coat proteins that bind reversibly to membranes have a central function in membrane transport within the secretory pathway1,2. One well-studied example is COPI or coatomer, a heptameric protein complex that is recruited to membranes by the GTP-binding protein Arf1. Assembly into an electron-dense coat then helps in budding off membrane to be transported between the endoplasmic reticulum (ER) and Golgi apparatus2. Here we propose and corroborate a simple model for coatomer and Arf1 activity based on results analysing the distribution and lifetime of fluorescently labelled coatomer and Arf1 on Golgi membranes of living cells. We find that activated Arf1 brings coatomer to membranes. However, once associated with membranes, Arf1 and coatomer have different residence times: coatomer remains on membranes after Arf1-GTP has been hydrolysed and dissociated. Rapid membrane binding and dissociation of coatomer and Arf1 occur stochastically, even without vesicle budding. We propose that this continuous activity of coatomer and Arf1 generates kinetically stable membrane domains that are connected to the formation of COPI-containing transport intermediates. This role for Arf1/coatomer might provide a model for investigating the behaviour of other coat protein systems within cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Incorporation of εCOP–GFP into functional coatomer complexes and their distribution.
Figure 2: Kinetics of COPI binding to and dissociation from Golgi and ER-to-Golgi transport intermediates in ldlF cells stabily expressing εCOP–GFP.
Figure 3: Golgi association–dissociation kinetics of Arf1–GFP/CFP and εCOP–GFP/YFP in AlF-treated or BFA-treated cells.
Figure 4: Kinetic modelling of coatomer and Arf1 activity and the effects of coatomer depletion on the rate of Arf1 dissociation from membranes.
Figure 5: Testing different models of coatomer function on membranes.

Similar content being viewed by others

References

  1. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Guo, Q., Penman, M., Trigatti, B. L. & Krieger, M. A single point mutation in ε-COP results in temperature-sensitive, lethal defects in membrane transport in a Chinese hamster ovary cell mutant. J. Biol. Chem. 271, 11191–11196 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Lahtinen, U., Dahllöf, B. & Saraste, J. Characterization of a 58 kDa cis-Golgi protein in pancreatic exocrine cells. J. Cell Sci. 103, 321–333 (1992)

    CAS  PubMed  Google Scholar 

  6. Shima, D. T., Scales, S. J., Kreis, T. E. & Pepperkok, R. Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic-reticulum-to-Golgi transport complexes. Curr. Biol. 9, 821–824 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Klumperman, J. et al. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J. Cell Sci. 111, 3411–3425 (1998)

    CAS  PubMed  Google Scholar 

  8. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001)

    Article  CAS  Google Scholar 

  9. Dascher, C. & Balch, W. E. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448 (1994)

    CAS  PubMed  Google Scholar 

  10. Klausner, R. D., Donaldson, J. G. & Lippincott-Schwartz, J. Brefeldin A: Insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080 (1992)

    Article  CAS  PubMed  Google Scholar 

  11. Vasudevan, C. et al. The distribution and translocation of the G protein ADP-ribosylation factor 1 in live cells is determined by its GTPase activity. J. Cell Sci. 111, 1277–1285 (1998)

    CAS  PubMed  Google Scholar 

  12. Peyroche, A. et al. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: Involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275–285 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. Teal, S. B., Hsu, V. W., Peters, P. J., Klausner, R. D. & Donaldson, J. G. An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes. J. Biol. Chem. 269, 3135–3138 (1994)

    CAS  PubMed  Google Scholar 

  14. Goldberg, J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671–679 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Szafer, E., Rotman, M. & Cassel, D. Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane. J. Biol. Chem. 276, 47834–47839 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Donaldson, J. G., Kahn, R. A., Lippincott-Schwartz, J. & Klausner, R. D. Binding of ARF and β-COP to Golgi membranes: possible regulation by a trimeric G protein. Science 254, 1197–1199 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kahn, R. A. Fluoride is not an activator of the smaller (20–25 kDa) GTP-binding proteins. J. Biol. Chem. 266, 15595–15597 (1991)

    CAS  PubMed  Google Scholar 

  18. Chardin, P. et al. A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481–484 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Peyroche, A., Paris, S. & Jackson, C. L. Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384, 479–481 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zhao, L. et al. Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit β. Proc. Natl Acad. Sci. USA 94, 4418–4423 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Puertollano, R., Randazzo, P. A., Presley, J. F., Hartnell, L. M. & Bonifacino, J. S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 105, 93–102 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Makler, V., Cukierman, E., Rotman, M., Admon, A. & Cassel, D. ADP-ribosylation factor-directed GTPase-activating protein. Purification and partial characterization. J. Biol. Chem. 270, 5232–5237 (1995)

    Article  CAS  PubMed  Google Scholar 

  23. Sohn, K. et al. A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J. Cell Biol. 135, 1239–1248 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J. 18, 4935–4948 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. Cosson, P. & Letourneur, F. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263, 1629–1631 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Lippincott-Schwartz, J., Roberts, T. H. & Hirschberg, K. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16, 557–589 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, X. et al. Clathrin exchange during clathrin-mediated endocytosis. J. Cell Biol. 155, 291–300 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ward, T. H., Polishchuk, R. S., Caplan, S., Hirschberg, K. & Lippincott-Schwartz, J. Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol. 155, 557–570 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Hailey for help in the analysis of Arf1–GFP in yeast cells; M. Krieger for his gift of ldlF cells; F. Wieland and J. E. Rothman for εCOP cDNA; J. Donaldson for Arf1[Q71L] cDNA; G. Romero for the Arf1–GFP plasmid; EG&G Wallac for the use of their Ultravision spinning disc confocal system; and J. Donaldson, J. Bonifacino, C. Jackson, K. Hirschberg, B. Nichols, A. Kenworthy, N. Cole and H. Radhakrishna for valuable discussion. J.F.P. was supported in part by a grant from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Lippincott-Schwartz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presley, J., Ward, T., Pfeifer, A. et al. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417, 187–193 (2002). https://doi.org/10.1038/417187a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417187a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing