Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transient aggregation of ubiquitinated proteins during dendritic cell maturation

Abstract

Dendritic cells (DCs) are antigen-presenting cells with the unique capacity to initiate primary immune responses1. Dendritic cells have a remarkable pattern of differentiation (maturation) that exhibits highly specific mechanisms to control antigen presentation restricted by major histocompatibility complex (MHC)2. MHC class I molecules present to CD8+ cytotoxic T cells peptides that are derived mostly from cytosolic proteins, which are ubiquitinated and then degraded by the proteasome3,4. Here we show that on inflammatory stimulation, DCs accumulate newly synthesized ubiquitinated proteins in large cytosolic structures. These structures are similar to, but distinct from, aggresomes and inclusion bodies observed in many amyloid diseases5,6. Notably, these dendritic cell aggresome-like induced structures (DALIS) are transient, require continuous protein synthesis and do not affect the ubiquitin–proteasome pathway. Our observations suggest the existence of an organized prioritization of protein degradation in stimulated DCs, which is probably important for regulating MHC class I presentation during maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitinated protein accumulation during DC maturation.
Figure 2: DALIS formation is transient and depends on protein translation.
Figure 3: Proteasome activity is not affected during DALIS formation and DCs can discriminate among ubiquitinated proteins.
Figure 4: Newly synthesized proteins are targeted to DALIS.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Hirsch, C. & Ploegh, H. L. Intracellular targeting of the proteasome. Trends Cell Biol. 10, 268–272 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Yewdell, J. W. & Bennink, J. R. Cut and trim: generating MHC class I peptide ligands. Curr. Opin. Immunol. 13, 13–18 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Kopito, R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Sherman, M. Y. & Goldberg, A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell. Biol. 2, 169–178 (2001)

    Article  CAS  Google Scholar 

  8. Fujimuro, M., Sawada, H. & Yokosawa, H. Production and characterization of monoclonal antibodies specific to multi-ubiquitin chains of polyubiquitinated proteins. FEBS Lett. 349, 173–180 (1994)

    Article  CAS  PubMed  Google Scholar 

  9. Gatti, E. et al. Large-scale culture and selective maturation of human Langerhans cells from granulocyte colony-stimulating factor-mobilized CD34+ progenitors. J. Immunol. 164, 3600–3607 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Jiang, W. et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375, 151–155 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wojcik, C., Schroeter, D., Wilk, S., Lamprecht, J. & Paweletz, N. Ubiquitin-mediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur. J. Cell Biol. 71, 311–318 (1996)

    CAS  PubMed  Google Scholar 

  13. Anton, L. C. et al. Intracellular localization of proteasomal degradation of a viral antigen. J. Cell. Biol. 146, 113–124 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. J. Cell. Biol. 143, 1883–1898 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Mata, R., Bebok, Z., Sorscher, E. J. & Sztul, E. S. Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell. Biol. 146, 1239–1254 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Iordanov, M. S. et al. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol. Cell. Biol. 17, 3373–3381 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo anti-inflammatory activity. Proc. Natl Acad. Sci. USA 96, 10403–10408 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Bogyo, M., Shin, S., McMaster, J. S. & Ploegh, H. L. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem. Biol. 5, 307–320 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. Rescigno, M., Martino, M., Sutherland, C. L., Gold, M. R. & Ricciardi-Castagnoli, P. Dendritic cell survival and maturation are regulated by different signalling pathways. J. Exp. Med. 188, 2175–2180 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thery, C. & Amigorena, S. The cell biology of antigen presentation in dendritic cells. Curr. Opin. Immunol. 13, 45–51 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Staufenbiel, M. & Deppert, W. Preparation of nuclear matrices from cultured cells: subfractionation of nuclei in situ. J. Cell Biol. 98, 1886–1894 (1984)

    Article  CAS  PubMed  Google Scholar 

  24. Reits, E. A., Vos, J. C., Gromme, M. & Neefjes, J. The major substrates for TAP I are derived from newly synthesized proteins. Nature 404, 774–778 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Khan, S. et al. Neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J. Immunol. 167, 4801–4804 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Brodsky, F. M. & Parham, P. Monomorphic anti-HLA-A,B,C monoclonal antibodies detecting molecular subunits and combinatorial determinants. J. Immunol. 128, 129–135 (1982)

    CAS  PubMed  Google Scholar 

  27. Huang, Q. et al. The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–875 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Yewdell, J. W., Schubert, U. & Bennink, J. R. At the crossroads of cell biology and immunology: DRiPs and other sources of peptide ligands for MHC class I molecules. J. Cell. Sci. 114, 845–851 (2001)

    CAS  PubMed  Google Scholar 

  29. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A.-M. Imbert, C. Chabannon and all the personnel at the cell repository of the Centre de Thérapie Cellulaire (Institut Paoli-Calmettes) for providing access to human CD34+ cells. We also thank J. Yewdell, P. Machy and L. Delamarre for a gift of antibody and for discussions. This work is supported by grants to P.P. from the Ministère de la Recherche et de la Technologie (Action Concertée Initiative Blanche), the Association pour la Recherche contre le Cancer, and the Fondation Schlumberger pour l'Education et la Recherche. H.L. is supported by a Sidaction and Agence Nationale de Recherches sur la Sida fellowships, and E.G. is an EU Marie Curie fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Pierre.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelouard, H., Gatti, E., Cappello, F. et al. Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417, 177–182 (2002). https://doi.org/10.1038/417177a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417177a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing