Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin-galvanic effect


There is much recent interest in exploiting the spin of conduction electrons in semiconductor heterostructures together with their charge to realize new device concepts1. Electrical currents are usually generated by electric or magnetic fields, or by gradients of, for example, carrier concentration or temperature. The electron spin in a spin-polarized electron gas can, in principle, also drive an electrical current, even at room temperature, if some general symmetry requirements are met. Here we demonstrate such a ‘spin-galvanic’ effect in semiconductor heterostructures, induced by a non-equilibrium, but uniform population of electron spins. The microscopic origin for this effect is that the two electronic sub-bands for spin-up and spin-down electrons are shifted in momentum space and, although the electron distribution in each sub-band is symmetric, there is an inherent asymmetry in the spin-flip scattering events between the two sub-bands. The resulting current flow has been detected by applying a magnetic field to rotate an optically oriented non-equilibrium spin polarization in the direction of the sample plane. In contrast to previous experiments, where spin-polarized currents were driven by electric fields in semiconductor2,3, we have here the complementary situation where electron spins drive a current without the need of an external electric field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopic origin of the spin-galvanic current in the presence of k-linear terms in the electron hamiltonian.
Figure 2: Two ways of generating an in-plane spin-polarization.
Figure 3: Current density jx normalized to the radiation power P as a function of the magnetic field B for normally incident circularly polarized radiation at room temperature for various samples and wavelengths.
Figure 4: Current jx as a function of magnetic field B for normally incident right-handed (open circles) and left-handed (filled circles) circularly polarized radiation at λ = 148 µm and radiation power 20 kW.


  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Hägele, D. et al. Spin transport in GaAs. Appl. Phys. Lett. 73, 1580–1582 (1998)

    Article  ADS  Google Scholar 

  3. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. Sov. JETP Lett. 39, 78–81 (1984)

    ADS  Google Scholar 

  5. D'yakonov, M. I. & Kocharovskii, V. Yu. Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors. Sov. Phys. Semicond. 20, 110–111 (1986)

    Google Scholar 

  6. Koopmans, B., Santos, P. V. & Cardona, M. Optical activity in seminconductors: stress and confinement effects. Phys. Status Solidi 205, 419–463 (1998)

    Article  CAS  Google Scholar 

  7. Ivchenko, E. L., Lyanda-Geller, Yu, B. & Pikus, G. E. Current of thermalized spin-oriented photocarriers. Sov. Phys. JETP 71, 550–557 (1990)

    Google Scholar 

  8. Fiederling, R. et al. Injection and detection of spin-polarized current in a light-emitting diode. Nature 402, 787–789 (1999)

    Article  ADS  Google Scholar 

  9. Meier, F. & Zakharchenya, B. P. (eds) Optical Orientation 1–523 (Elsevier Science, Amsterdam, 1984)

  10. Hammar, P. R. & Johnson, M. Spin-dependent current transmission across a ferromagnet-insulator-two-dimensional electron gas junction. Appl. Phys. Lett. 79, 2591–2593 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Zhu, H. J. et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601-1– 016601-4 (2001)

    ADS  Google Scholar 

  12. Hanbicki, A. T. et al. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 80, 1240–1242 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Tarasenko, S. A. & Ivchenko, E. L. Spin orientation of two-dimensional electron gas under intraband optical pumping. Preprint cond-mat/0202471 at 〈〉 (2002).

  14. Ganichev, S. D. et al. Conversion of spin into direct electric current in quantum wells. Phys. Rev. Lett. 86, 4358–4361 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Hanle, W. Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Phys. 30, 93–105 (1924)

    Article  ADS  CAS  Google Scholar 

  16. Ganichev, S. D. Tunnel ionization of deep impurities in semiconductors induced by terahertz electric fields. Physica B 273–274, 737–742 (1999)

    Article  ADS  Google Scholar 

  17. Ivchenko, E. L., Kiselev, A. A. & Willander, M. Electronic g-factor in biased quantum wells. Solid State Commun. 102, 375–378 (1997)

    Article  ADS  CAS  Google Scholar 

  18. Damen, T. C. et al. Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells. Phys. Rev. Lett. 67, 3432–3435 (1991)

    Article  ADS  CAS  Google Scholar 

  19. Kikkawa, J. M. et al. Room-temperature spin memory in two-dimensional electron gases. Science 277, 1284–1287 (1997)

    Article  CAS  Google Scholar 

  20. Sandu, J. S. et al. Gateable suppression of spin relaxation in semiconductors. Phys. Rev. Lett. 86, 2150–2153 (2001)

    Article  ADS  Google Scholar 

  21. Marie, X. et al. Hole spin quantum beats in quantum-well structures. Phys. Rev. Lett. 60, 5811–5817 (1999)

    CAS  Google Scholar 

  22. Andrianov, A. V. & Yaroshetskii, I. D. Magnetic-field-induced circular photovoltaic effect in semiconductors. Sov. JETP Lett. 40, 882–884 (1984)

    ADS  Google Scholar 

  23. Ivchenko, E. L., Lyanda-Geller, Yu, B. & Pikus, G. E. Circular magnetophotocurrent and spin splitting of band states in optically-inactive crystals. Solid State Commun. 69, 663–665 (1989)

    Article  ADS  CAS  Google Scholar 

  24. Averkiev, N. S., Golub, L. E. & Willander, M. Spin relaxation anisotropy in two-dimensional semiconductor systems. Preprint cond-mat/0202437 at 〈〉 (2002).

  25. Averkiev, N. S. & D'yakonov, M. I. Current due to inhomogeneity of the spin orientation of electrons in a semiconductor. Sov. Phys. Semicond. 17, 393–395 (1983)

    Google Scholar 

  26. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985)

    Article  ADS  CAS  Google Scholar 

  27. Zutic, I., Fabian, J. & Das Sarma, S. Spin-polarized transport in inhomogeneous magnetic semiconductors: theory of magnetic/nonmagnetic pn junctions. Phys. Rev. Lett. 88, 066603-1– 066603-4 (2001)

    ADS  Google Scholar 

Download references


We thank D. I. Kovalev, W. Schoepe and M. Bichler for helpful discussions and support. We acknowledge financial support from the DFG, the RFFI and INTAS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. D. Ganichev.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganichev, S., Ivchenko, E., Bel'kov, V. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing