A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont


According to small subunit ribosomal RNA (ss rRNA) sequence comparisons all known Archaea belong to the phyla Crenarchaeota, Euryarchaeota, and—indicated only by environmental DNA sequences—to the ‘Korarchaeota’1,2. Here we report the cultivation of a new nanosized hyperthermophilic archaeon from a submarine hot vent. This archaeon cannot be attached to one of these groups and therefore must represent an unknown phylum which we name ‘Nanoarchaeota’ and species, which we name ‘Nanoarchaeum equitans’. Cells of ‘N. equitans’ are spherical, and only about 400 nm in diameter. They grow attached to the surface of a specific archaeal host, a new member of the genus Ignicoccus3. The distribution of the ‘Nanoarchaeota’ is so far unknown. Owing to their unusual ss rRNA sequence, members remained undetectable by commonly used ecological studies based on the polymerase chain reaction4. ‘N. equitans’ harbours the smallest archaeal genome; it is only 0.5 megabases in size. This organism will provide insight into the evolution of thermophily, of tiny genomes and of interspecies communication.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Electron microscopy and fluorescence light microscopy of the ‘Nanoarchaeum equitans’–Ignicoccus sp. coculture.
Figure 2: Southern blot analysis of DNA from Ignicoccus sp. and the ‘N. equitans’–Ignicoccus sp. coculture, treated with restriction enzymes.
Figure 3: Secondary structure model for the ss rRNA of ‘N. equitans’.


  1. 1

    Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Barns, S. M., Delwiche, C. F., Palmers, J. D. & Pace, N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl Acad. Sci. USA 93, 9188–9193 (1996).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Huber, H. et al. Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int. J. Syst. Evol. Microbiol. 50, 2093–2100 (2000).

    Article  Google Scholar 

  4. 4

    Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl Acad. Sci. USA 91, 1609–1613 (1994).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Stetter, K. O. Microbial life in hyperthermal environments. Am. Soc. Microbiol. News 61, 285–290 (1995).

    Google Scholar 

  6. 6

    Stetter, K. O. Size Limits of Very Small Microorganisms; Proceedings of a Workshop (ed. Space studies board) 68–73 (National Academic Press, Washington DC, 1998).

    Google Scholar 

  7. 7

    Fricke, H., Giere, O., Stetter, K. O., Alfredsson, G. A. & Kristjansson, J. K. Hydrothermal vent communities at the shallow subpolar mid-Atlantic ridge. Mar. Biol. 102, 425–429 (1989).

    Article  Google Scholar 

  8. 8

    Huber, H., Huber, G. & Stetter, K. O. A modified 4′,6′-diamidino-2-phenylindole fluorescence staining procedure suitable for the visualization of lithotrophic bacteria. Syst. Appl. Microbiol. 6, 105–106 (1985).

    Article  Google Scholar 

  9. 9

    Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Huber, R. et al. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376, 57–58 (1995).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Eder, W., Ludwig, W. & Huber, R. Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch. Microbiol. 172, 213–218 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Sambrook, J. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, New York, 1989).

  14. 14

    Ludwig, W. et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Burggraf, S. et al. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 60, 3112–3119 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Stahl, D. A. & Amann, R. Nucleic acid techniques in bacterial systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, Chichester, 1991).

    Google Scholar 

  17. 17

    Preston, C. M., Wu, K. Y., Molinski, T. F. & DeLong, E. F. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl Acad. Sci. USA 93, 6241–6246 (1996).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Fraser, C. M. et al. the minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Rohozinski, J., Girton, L. E. & Van Etten, J. L. Chlorella viruses contain linear nonpermutated double-stranded DNA genomes with covalently closed hairpin ends. Virology 168, 363–369 (1989).

    CAS  Article  Google Scholar 

  21. 21

    Murphy, F. A. et al. (eds) Virus Taxonomy: Sixth Report of the International Committee on Taxonomy of Viruses (Springer, Vienna/New York, 1995).

    Google Scholar 

  22. 22

    Hutchinson, C. A. III et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).

    Article  Google Scholar 

  23. 23

    Ochman, H. & Moran, N. A. Genes lost and genes found: Evolution of bacterial pathogenesis and symbiosis. Science 292, 1096–1099 (2001).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Brosius, J., Dull, T J. Sleeter, D. D. & Noller, H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148, 107–127 (1981).

    CAS  Article  Google Scholar 

  25. 25

    Baumann, C., Judex, M., Huber, H. & Wirth, R. Estimation of genome sizes of hyperthermophiles. Extremophiles 2, 101–108 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Burggraf, S., Huber, H. & Stetter, K. O. Reclassification of the crenarchaeal orders and families in accordance with 16S ribosomal RNA sequence data. Int. J. Syst. Bacteriol. 47, 657–660 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Ludwig, W. & Strunk, O. ARB: A software environment for sequence data (2002); available at http://www.arb-home.de.

  28. 28

    De Rijk, P. & De Wachter, R. RnaViz, a program for the visualisation of RNA secondary structure. Nucleic Acids Res. 25, 4679–4684 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Burggraf, S., Heyder, P. & Eis, N. A pivotal archaea group. Nature 383, 780 (1997).

    ADS  Article  Google Scholar 

Download references


We thank W. Ludwig and D. Prangishvili for stimulating discussions, S. Diller, S. Leptihn, M. Brandl, I. Wyschkony and P. Hummel for technical support, and B. Hedlund for critically reading the manuscript. We are grateful to the cruise leader P. Stoffers, the crew of RV Poseidon and the submersible Jago team for support during sampling, and the Icelandic government for a research permit. This study was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Author information



Corresponding author

Correspondence to Karl O. Stetter.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huber, H., Hohn, M., Rachel, R. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002). https://doi.org/10.1038/417063a

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing