Abstract
Three-dimensional (3D) metallic crystals are promising photonic bandgap1,2,3 structures: they can possess a large bandgap4,5,6, new electromagnetic phenomena can be explored7,8,9, and high-temperature (above 1,000 °C) applications may be possible. However, investigation of their photonic bandgap properties is challenging, especially in the infrared and visible spectrum, as metals are dispersive and absorbing in these regions10. Studies of metallic photonic crystals have therefore mainly concentrated on microwave and millimetre wavelengths8,11,12. Difficulties in fabricating 3D metallic crystals present another challenge, although emerging techniques such as self-assembly13,14 may help to resolve these problems. Here we report measurements and simulations of a 3D tungsten crystal that has a large photonic bandgap at infrared wavelengths (from about 8 to 20 µm). A very strong attenuation exists in the bandgap, ∼30 dB per unit cell at 12 µm. These structures also possess other interesting optical properties; a sharp absorption peak is present at the photonic band edge, and a surprisingly large transmission is observed in the allowed band, below 6 µm. We propose that these 3D metallic photonic crystals can be used to integrate various photonic transport phenomena, allowing applications in thermophotovoltaics and blackbody emission.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).
John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984).
Genack, A. & Garcia, N. Observation of photon localization in a three-dimensional periodic array. Phys. Rev. Lett. 66, 2063–2067 (1991).
Sigalas, M. M., Chan, C. T., Ho, K. M. & Soulokous, C. M. Metallic photonic band-gap materials. Phys. Rev. B 52, 11744–11751 (1995).
Fan, S., Villeneuve, P. R. & Joannopoulos, J. D. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B 54, 11245–11251 (1996).
Mcintosh, K. A. et. al. Three-dimensional metallodielectric photonic crystals exhibiting resonant infrared stop bands. Appl. Phys. Lett. 70, 2937–2939 (1997).
Sievenpiper, D. F., Sickmiller, M. E. & Yablonovitch, E. 3D wire mesh photonic crystals. Phys. Rev. Lett. 76, 2480–2483 (1996).
Moroz, A. Three-dimensional complete photonic-band-gap structures in the visible. Phys. Rev. Lett. 83, 5274–5277 (1999).
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).
Palik, E. D. (ed.) Handbook of Optical Constants of Solids 275–409 (Academic, San Diego, 1998).
Ozbay, E. et al. Defect structures in metallic photonic crystals. Appl. Phys. Lett. 69, 3797–3799 (1996).
Sievenpiper, D. F. et al. 3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands. Phys. Rev. Lett. 80, 2829–2832 (1998).
Velev, O. D. & Kaler, E. W. Structured porous materials via colloidal crystal templating: from inorganic oxides to metals. Adv. Mater. 12, 531–534 (2000).
Zakhidov, A. A. et al. Three-dimensionally periodic conductive nanostructures: network versus cermet topologies for metallic PBG. Synth. Met. 116, 419–426 (2001).
Lin, S. Y. et al. A three-dimensional photonic crystal in the infrared wavelengths. Nature 394, 252–253 (1998).
Ordal, M. A. et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22, 1099–1119 (1983).
El-Kady, I., Sigalas, M. M., Biswas, R., Ho, K. M. & Soukoulis, C. M. Metallic photonic crystals at optical wavelengths. Phys. Rev. B 62, 15299–15301 (2000).
McClelland, J. F., Jones, R. W., Lou, S. & Seaverson, L. M. in Practical Sampling Techniques for Infrared Analysis (ed. Coleman, P. B.) Ch. 5 (CRC, Boca Raton, Florida, 1993).
Lin, S. Y., Fleming, J. G., Chow, E. & Bur, J. Enhancement and suppression of thermal emission by a three-dimensional photonic crystal. Phys. Rev. B 62, R2243–R2246 (2000).
Dereniak, E. L. & Boreman, G. D. Infrared Detectors and Systems 74 (Wiley & Sons, New York, 1996).
Zenker, M., Heinzel, M., Stollwerck, G., Ferber, J. & Luther, J. Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells. IEEE Trans. Elec. Dev. 48, 367–376 (2001).
Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944).
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).
Porto, J. A., Garcia-Vidal, F. J. & Pendry, J. B. Transmission resonance on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999).
Ho, K. M. et al. Photonic band gap in three-dimensions: new layer-by-layer periodic structure. Solid State Commun. 89, 413–416 (1994).
Acknowledgements
We thank J. Gees and J. Moreno for discussions, and M. Tuck and J. Bur for technical support. The work at Sandia National Laboratories was supported by the US DOE. Sandia is a multi-programme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests
Rights and permissions
About this article
Cite this article
Fleming, J., Lin, S., El-Kady, I. et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417, 52–55 (2002). https://doi.org/10.1038/417052a
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/417052a