Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

All-metallic three-dimensional photonic crystals with a large infrared bandgap


Three-dimensional (3D) metallic crystals are promising photonic bandgap1,2,3 structures: they can possess a large bandgap4,5,6, new electromagnetic phenomena can be explored7,8,9, and high-temperature (above 1,000 °C) applications may be possible. However, investigation of their photonic bandgap properties is challenging, especially in the infrared and visible spectrum, as metals are dispersive and absorbing in these regions10. Studies of metallic photonic crystals have therefore mainly concentrated on microwave and millimetre wavelengths8,11,12. Difficulties in fabricating 3D metallic crystals present another challenge, although emerging techniques such as self-assembly13,14 may help to resolve these problems. Here we report measurements and simulations of a 3D tungsten crystal that has a large photonic bandgap at infrared wavelengths (from about 8 to 20 µm). A very strong attenuation exists in the bandgap, 30 dB per unit cell at 12 µm. These structures also possess other interesting optical properties; a sharp absorption peak is present at the photonic band edge, and a surprisingly large transmission is observed in the allowed band, below 6 µm. We propose that these 3D metallic photonic crystals can be used to integrate various photonic transport phenomena, allowing applications in thermophotovoltaics and blackbody emission.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of a 3D tungsten photonic crystal, taken by a scanning electron microscope (SEM).
Figure 2: Measured reflectance and transmission/absorption spectra of the tungsten photonic crystal.
Figure 3: Calculated reflectance and transmission/absorption spectra of 3D tungsten photonic crystals.
Figure 4: Results of a finite-difference time-domain (FDTD) calculation for a six-layer tungsten 3D photonic crystal.


  1. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  CAS  Google Scholar 

  2. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984).

    Article  ADS  Google Scholar 

  3. Genack, A. & Garcia, N. Observation of photon localization in a three-dimensional periodic array. Phys. Rev. Lett. 66, 2063–2067 (1991).

    Article  ADS  Google Scholar 

  4. Sigalas, M. M., Chan, C. T., Ho, K. M. & Soulokous, C. M. Metallic photonic band-gap materials. Phys. Rev. B 52, 11744–11751 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Fan, S., Villeneuve, P. R. & Joannopoulos, J. D. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B 54, 11245–11251 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Mcintosh, K. A. et. al. Three-dimensional metallodielectric photonic crystals exhibiting resonant infrared stop bands. Appl. Phys. Lett. 70, 2937–2939 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Sievenpiper, D. F., Sickmiller, M. E. & Yablonovitch, E. 3D wire mesh photonic crystals. Phys. Rev. Lett. 76, 2480–2483 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Moroz, A. Three-dimensional complete photonic-band-gap structures in the visible. Phys. Rev. Lett. 83, 5274–5277 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Palik, E. D. (ed.) Handbook of Optical Constants of Solids 275–409 (Academic, San Diego, 1998).

    Google Scholar 

  11. Ozbay, E. et al. Defect structures in metallic photonic crystals. Appl. Phys. Lett. 69, 3797–3799 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Sievenpiper, D. F. et al. 3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands. Phys. Rev. Lett. 80, 2829–2832 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Velev, O. D. & Kaler, E. W. Structured porous materials via colloidal crystal templating: from inorganic oxides to metals. Adv. Mater. 12, 531–534 (2000).

    Article  CAS  Google Scholar 

  14. Zakhidov, A. A. et al. Three-dimensionally periodic conductive nanostructures: network versus cermet topologies for metallic PBG. Synth. Met. 116, 419–426 (2001).

    Article  CAS  Google Scholar 

  15. Lin, S. Y. et al. A three-dimensional photonic crystal in the infrared wavelengths. Nature 394, 252–253 (1998).

    Article  ADS  Google Scholar 

  16. Ordal, M. A. et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22, 1099–1119 (1983).

    Article  ADS  CAS  Google Scholar 

  17. El-Kady, I., Sigalas, M. M., Biswas, R., Ho, K. M. & Soukoulis, C. M. Metallic photonic crystals at optical wavelengths. Phys. Rev. B 62, 15299–15301 (2000).

    Article  ADS  CAS  Google Scholar 

  18. McClelland, J. F., Jones, R. W., Lou, S. & Seaverson, L. M. in Practical Sampling Techniques for Infrared Analysis (ed. Coleman, P. B.) Ch. 5 (CRC, Boca Raton, Florida, 1993).

    Google Scholar 

  19. Lin, S. Y., Fleming, J. G., Chow, E. & Bur, J. Enhancement and suppression of thermal emission by a three-dimensional photonic crystal. Phys. Rev. B 62, R2243–R2246 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Dereniak, E. L. & Boreman, G. D. Infrared Detectors and Systems 74 (Wiley & Sons, New York, 1996).

    Google Scholar 

  21. Zenker, M., Heinzel, M., Stollwerck, G., Ferber, J. & Luther, J. Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells. IEEE Trans. Elec. Dev. 48, 367–376 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  23. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Porto, J. A., Garcia-Vidal, F. J. & Pendry, J. B. Transmission resonance on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Ho, K. M. et al. Photonic band gap in three-dimensions: new layer-by-layer periodic structure. Solid State Commun. 89, 413–416 (1994).

    Article  ADS  CAS  Google Scholar 

Download references


We thank J. Gees and J. Moreno for discussions, and M. Tuck and J. Bur for technical support. The work at Sandia National Laboratories was supported by the US DOE. Sandia is a multi-programme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Y. Lin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, J., Lin, S., El-Kady, I. et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417, 52–55 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing