Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Association of dwarfism and floral induction with a grape ‘green revolution’ mutation


The transition from vegetative to reproductive growth is an essential process in the life cycle of plants. Plant floral induction pathways respond to both environmental and endogenous cues and much has been learnt about these genetic pathways by studying mutants of Arabidopsis1,2. Gibberellins (GAs) are plant growth regulators important in many aspects of plant growth and in Arabidopsis they promote flowering3,4,5. Here we provide genetic evidence that GAs inhibit flowering in grapevine. A grapevine dwarf mutant derived from the L1 cell layer of the champagne cultivar Pinot Meunier produces inflorescences along the length of the shoot where tendrils are normally formed. The mutated gene associated with the phenotype is a homologue of the wheat ‘green revolution’ gene Reduced height-1 (ref. 6) and the Arabidopsis gene GA insensitive (GAI)7. The conversion of tendrils to inflorescences in the mutant demonstrates that the grapevine tendril is a modified inflorescence inhibited from completing floral development by GAs.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The L1 plant produces inflorescences instead of tendrils.
Figure 2: Mutant phenotypes.
Figure 3: The Vvgai1 point mutation results in an amino-acid substitution.


  1. Hempel, F. D., Welch, D. R. & Feldman, L. J. Floral induction and determination: where is flowering controlled? Trends Plant Sci. 5, 17–21 (2000).

    CAS  Article  Google Scholar 

  2. Araki, T. Transition from vegetative to reproductive phase. Curr. Opin. Plant Biol. 4, 63–68 (2001).

    CAS  Article  Google Scholar 

  3. Blazquez, M. A., Green, R., Nilsson, O., Sussman, M. R. & Weigel, D. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791–800 (1998).

    CAS  Article  Google Scholar 

  4. Blazquez, M. A. & Weigel, D. Integration of floral inductive signals in Arabidopsis. Nature 404, 889–892 (2000).

    ADS  CAS  Article  Google Scholar 

  5. Langridge, J. Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature 180, 36–37 (1957).

    ADS  CAS  Article  Google Scholar 

  6. Peng, J. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999).

    ADS  CAS  Article  Google Scholar 

  7. Peng, J. et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 11, 3194–3205 (1997).

    CAS  Article  Google Scholar 

  8. Rives, M. Vigour, pruning, cropping in the grapevine (Vitis vinifera L.). I. A literature review. Agronomie 20, 79–91 (2000).

    ADS  Article  Google Scholar 

  9. Viala, P. & Vermorel, V. Ampélographie, Tome II (Masson, Paris, 1901).

    Google Scholar 

  10. Skene, K. G. M. & Barlass, M. Studies on the fragmented shoot apex of grapevine. IV. Separation of phenotypes in a periclinal chimera in vitro. J. Exp. Bot. 34, 1271–1280 (1983).

    Article  Google Scholar 

  11. Thompson, M. M. & Olmo, H. P. Cytohistological studies of cytochimeric and tetraploid grapes. Am. J. Bot. 50, 901–906 (1963).

    Article  Google Scholar 

  12. Franks, T., Botta, R. & Thomas, M. R. Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor. Appl. Genet. 104, 192–199 (2002).

    CAS  Article  Google Scholar 

  13. Pratt, C. Reproductive anatomy in cultivated grapes: a review. Am. J. Enol. Vitic. 22, 92–109 (1971).

    Google Scholar 

  14. Mullins, M. G. Regulation of inflorescence growth in cuttings of the grapevine (Vitis vinifera L.). J. Exp. Bot. 19, 532–543 (1968).

    CAS  Article  Google Scholar 

  15. Utsunomiya, N., Sugiura, A. & Tomana, T. Effect of CCC and pinching on inflorescence induction and development on lateral shoots in grapevine. J. Jpn Soc. Hort. Sci. 47, 151–157 (1978).

    Article  Google Scholar 

  16. Boss, P. K. & Thomas, M. R. Tendrils, inflorescences and fruitfulness: A molecular perspective. Aust. J. Grape Wine Res. 6, 168–174 (2000).

    Article  Google Scholar 

  17. Koornneef, M. et al. A gibberellin insensitve mutant of Arabidopsis thaliana. Physiol. Plant. 65, 33–39 (1985).

    CAS  Article  Google Scholar 

  18. Peng, J. et al. Extragenic suppressors of the Arabidopsis gai mutation alter the dose–response relationship of diverse gibberellin responses. Plant Physiol. 119, 1199–1207 (1999).

    CAS  Article  Google Scholar 

  19. Pysh, L. D., Wysocka-Diller, J. W., Camilleri, C., Bouchez, D. & Benfey, P. N. The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111–119 (1999).

    CAS  Article  Google Scholar 

  20. Neff, M. M., Neff, J. D., Chory, J. & Pepper, A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).

    CAS  Article  Google Scholar 

  21. Ellis, R. H., Hong, T. D. & Roberts, E. H. A note on the development of a practical procedure for promoting the germination of dormant seed of grape (Vitis spp.). Vitis 22, 211–219 (1983).

    Google Scholar 

  22. Peng, J. & Harberd, N. P. Transposon-associated somatic gai-loss sectors in Arabidopsis. Plant Sci. 130, 181–188 (1997).

    CAS  Article  Google Scholar 

  23. Simpson, G. G., Gendall, A. R. & Dean, C. When to switch to flowering. Annu. Rev. Cell Dev. Biol. 15, 519–550 (1999).

    CAS  Article  Google Scholar 

  24. Buttrose, M. S. Climatic factors and fruitfulness in grapevines. Hort. Abstr. 44, 319–326 (1974).

    Google Scholar 

  25. Boss, P. K., Davies, C. & Robinson, S. P. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv. Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 111, 1059–1066 (1996).

    CAS  Article  Google Scholar 

  26. Frohman, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl Acad. Sci. USA 85, 8998–9002 (1988).

    ADS  CAS  Article  Google Scholar 

  27. Thomas, M. R., Matsumoto, S., Cain, P. & Scott, N. S. Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor. Appl. Genet. 86, 173–180 (1993).

    CAS  Article  Google Scholar 

Download references


We thank R. King and A. Poole for the GA analyses by GC–MS; T. Franks for plant material; S. McClure for help with the scanning electron mictroscopy; and D. MacKenzie and C. Reich for technical assistance. This work was supported in part by the Grape and Wine Research and Development Corporation, Dried Fruits Research and Development Council and the Cooperative Research Centre for Viticulture.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mark R. Thomas.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boss, P., Thomas, M. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416, 847–850 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing