Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into phase transition kinetics from colloid science

Abstract

Colloids display intriguing transitions between gas, liquid, solid and liquid crystalline phases. Such phase transitions are ubiquitous in nature and have been studied for decades. However, the predictions of phase diagrams are not always realized; systems often become undercooled, supersaturated, or trapped in gel-like states. In many cases the end products strongly depend on the starting position in the phase diagram and discrepancies between predictions and actual observations are due to the intricacies of the dynamics of phase transitions. Colloid science aims to understand the underlying mechanisms of these transitions. Important advances have been made, for example, with new imaging techniques that allow direct observation of individual colloidal particles undergoing phase transitions, revealing some of the secrets of the complex pathways involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A wide range of phase diagrams occurs naturally.
Figure 2: Nucleation events in simulations and in experiments.
Figure 3: Suppression of crystallization by a small amount of uniaxial stress16.
Figure 4: The depletion interaction and its phase diagrams, a concept that was introduced by Asakura and Oosawa75 in 1954 and later by Vrij76.
Figure 5: Confocal microscopy imaging at phase separation in colloid–polymer mixtures35.
Figure 6: Nucleation mechanisms around the metastable critical point.

Similar content being viewed by others

References

  1. Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Elliot, M. S., Haddon, S B. & Poon, W. C. K. Direct observation of pre-critical nuclei in a metastable hard-sphere fluid. J. Phys. Condens. Matter 13, L553–L558 (2001).

    Article  CAS  ADS  Google Scholar 

  3. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Bruce, A. D., Wilding, N B. & Ackland, G. J. Free energy of crystalline solids: a lattice-switch Monte Carlo method. Phys. Rev. Lett. 79, 3002–3005 (1997).

    Article  CAS  ADS  Google Scholar 

  5. Alexander, S. & McTague, J. P. Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702–705 (1978).

    Article  CAS  ADS  Google Scholar 

  6. Zhu, J. et al. Crystallization of hard-sphere colloids in microgravity. Nature 387, 883–885 (1997).

    Article  CAS  ADS  Google Scholar 

  7. Pusey, P. N. et al. Structure of crystals of hard colloidal spheres. Phys. Rev. Lett. 63, 2753–2756 (1989).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Pronk, S. & Frenkel, D. Can stacking faults in hard-sphere crystals anneal out spontaneously? J. Chem. Phys. 110, 4589–4592 (1999).

    Article  CAS  ADS  Google Scholar 

  9. Pusey, P. N. & van Megen, W. Phase-behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  CAS  ADS  Google Scholar 

  10. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).

    Article  CAS  ADS  Google Scholar 

  12. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Dinsmore, A. D., Weeks, E. R., Prasad, V., Levitt, A. C. & Weitz, D. A. Three-dimensional confocal microscopy of colloids. Appl. Opt. 40, 4152–4159 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Cui, B., Lin, B. & Rice, S. A. Dynamical heterogeneity in a dense quasi-two-dimensional colloidal liquid. J. Chem. Phys. 114, 9142–9155 (2001).

    Article  CAS  ADS  Google Scholar 

  16. Kegel, W. K. Crystallization in glassy suspensions of colloidal hard spheres. Langmuir 16, 939–941 (2000).

    Article  CAS  Google Scholar 

  17. Evans, R. M. L. & Holmes, C. B. Diffusive growth of polydisperse hard-sphere crystals. Phys. Rev. E 64, 0111404-1–0111404-9 (2001).

    ADS  Google Scholar 

  18. Evans, R. M. L., Fairhurst, D. J. & Poon, W. C. K. Universal law of fractionation for slightly polydisperse systems. Phys. Rev. Lett. 81, 1326–1329 (1998).

    Article  CAS  ADS  Google Scholar 

  19. Bolhuis, P. G. & Kofke, D. A. Monte Carlo study of freezing of polydisperse hard spheres. Phys. Rev. E 54, 634–643 (1996).

    Article  CAS  ADS  Google Scholar 

  20. Kofke, D. A. & Bolhuis, P. G. Freezing of polydisperse hard spheres. Phys. Rev. E 59, 618–622 (1999).

    Article  CAS  ADS  Google Scholar 

  21. Auer, S. & Frenkel, D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature 413, 694–695 (2001).

    Article  Google Scholar 

  22. Oxtoby, D. W. Crystallization: diversity suppresses growth. Nature 413, 694–695 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Williams, S. R., Snook, I. K. & van Megen, W. Molecular dynamics study of the stability of the hard sphere glass. Phys. Rev. E 64, 021506-1–021506-7 (2001).

    ADS  Google Scholar 

  24. Cahn, J. W. The metastable liquidus and its effect on the crystallization of glass. J. Am. Ceram. Soc. 52, 118–121 (1969).

    Article  CAS  Google Scholar 

  25. Evans, R. M. L., Poon, W. C. K. & Renth, F. Classification of ordering kinetics in three-phase systems. Phys. Rev. E 64, 031403-1–031403-13 (2001).

    ADS  Google Scholar 

  26. Renth, F., Poon, W. C. K. & Evans, R. M. L. Phase transition kinetics in colloid-polymer mixtures at triple coexistence: kinetic maps from free-energy landscapes. Phys. Rev. E 64, 031402-1–031402-9 (2001).

    Article  ADS  Google Scholar 

  27. Poon, W. C. K. et al. Colloid-polymer mixtures at triple coexistence: kinetic maps from free-energy landscapes. Phys. Rev. Lett. 83, 1239–1242 (1999).

    Article  CAS  ADS  Google Scholar 

  28. Lomakin, A., Asherie, N. & Benedek, G. B. Aeolotopic interactions of globular proteins. Proc. Natl Acad. Sci. USA 96, 9465–9468 (1999).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  29. van Schmoluchowski, M. Versuch einer Mathermatischen Theorie der Koagulationkinetik Losungen. Z. Phys. Chem. 92, 129–168 (1917).

    Google Scholar 

  30. Asnaghi, D., Carpineti, M. & Giglio, M. Recent developments in aggregation kinetics. Mater. Res. Bull. 19(5), 14–18 (May 1994).

    Article  CAS  Google Scholar 

  31. Poon, W. C. K. & Haw, M. D. Mesoscopic structure formation in colloidal aggregation and gelation. Adv. Colloid Interface Sci. 73, 71–126 (1997).

    Article  CAS  Google Scholar 

  32. Weitz, D. A., Huang, J. S., Lin, M. Y. & Sung, J. Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids. Phys. Rev. E 54, 1416–1419 (1985).

    CAS  ADS  Google Scholar 

  33. Asnaghi, D., Carpinetti, M., Gigkio, M. & Sozzi, M. Coagulation kinetics and aggregate morphology in the intermediate regimes between diffusion-limited and reaction-limited cluster aggregation. Phys. Rev. A 45, 1018–1023 (1992).

    Article  CAS  ADS  PubMed  Google Scholar 

  34. Poulin, P., Bibett, J. & Weitz, D. A. From colloidal aggregation to spinodal decomposition in sticky emulsions. Eur. Phys. J. B 7, 277–281 (1999).

    Article  CAS  ADS  Google Scholar 

  35. de Hoog, E. H. A., Kegel, W. K., van Blaaderen, A. & Lekkerkerker, H. N. W. Direct observation of crystallization and aggregation in a phase-separating colloid-polymer suspension. Phys. Rev. E 64, 021407-1–021407-9 (2001).

    Article  ADS  Google Scholar 

  36. Anderson, V. J., de Hoog, E. H. A. & Lekkerkerker, H. N. W. Mechanisms of phase separation and aggregation in colloid-polymer mixtures. Phys. Rev. E 65, 011403-1–011403-8 (2002).

    ADS  Google Scholar 

  37. Hobbie, E. K. Depletion-driven phase separation and reversible aggregation in confined colloidal mixtures. Langmuir 15, 8807–8812 (1999).

    Article  CAS  Google Scholar 

  38. Rouw, P. W., Woutersen, A. T. J. M., Ackerson, B. J. & de Kruif, C. G. Adhesive hard sphere dispersions. Physica A 156, 876–898 (1989).

    Article  CAS  ADS  Google Scholar 

  39. Bibette, J., Mason, T. G., Gang, H. & Weitz, D. A. Kinetically induced ordering in gelation of emulsions. Phys. Rev. Lett. 69, 981–984 (1992).

    Article  CAS  ADS  PubMed  Google Scholar 

  40. Carpineti, M. & Giglio, M. Spinodal-type dynamics in fractal aggregation of colloidal clusters. Phys. Rev. Lett. 68, 3327–3330 (1992).

    Article  CAS  ADS  PubMed  Google Scholar 

  41. Verhaegh, N. A. M., Asnaghi, D., Lekkerkerker, H. N. W., Giglio, M. & Cipelletti, L. Transient gelation by spinodal decomposition in colloid-polymer mixtures. Physica A 242, 104–118 (1997).

    Article  CAS  ADS  Google Scholar 

  42. Tanaka, H. & Araki, T. Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics. Phys. Rev. Lett. 85, 1338–1341 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  43. Hobbie, E. K. Metastability and depletion-driven aggregation. Phys. Rev. Lett. 81, 3996–3999 (1998).

    Article  CAS  ADS  Google Scholar 

  44. Bos, M. T. A. & van Opheusden, J. H. F. Brownian dynamics simulation of gelation and aging in interacting colloidal systems. Phys. Rev. E 53, 5044–5050 (1996).

    Article  CAS  ADS  Google Scholar 

  45. Shih, W. Y., Aksay, I. A. & Kikuchi, R. Reversible-growth model: cluster-cluster aggregation with finite binding energies. Phys. Rev. A 36, 5015–5019 (1987).

    Article  CAS  ADS  Google Scholar 

  46. Terao, T. & Nakayama, T. Sol-gel transition of reversible cluster-cluster aggregations. Phys. Rev. E 58, 3490–3494 (1998).

    Article  CAS  ADS  Google Scholar 

  47. Peters, E. A. J. F., Kollmann, M., Barenburg, T. M. A. O. & Philipse, A. P. Caging of a d-dimensional sphere and its relevance for the random dense sphere packing. Phys. Rev. E 63, 21404-1–21404-9 (2001).

    Article  ADS  Google Scholar 

  48. Gisler, T., Ball, R. C. & Weitz, D. A. Strain hardening of fractal colloidal gels. Phys. Rev. Lett. 80, 778–781 (1998).

    Article  ADS  Google Scholar 

  49. Krall, A. H. & Weitz, D. A. Internal dynamics and elasticity of fractal colloidal gels. Phys. Rev. Lett. 80, 778–781 (1998).

    Article  CAS  ADS  Google Scholar 

  50. Cipalletti, L., Manley, S., Ball, R. C. & Weitz, D. A. Glasslike kinetic arrest at the colloidal-gelation transition. Phys. Rev. Lett. 86, 6042–6044 (2001).

    Article  Google Scholar 

  51. Segre, P. N., Prasad, V., Schofield, A. B. & Weitz, D. A. Glasslike kinetic arrest at the colloidal-gelation transition. Phys. Rev. Lett. 86, 6042–6044 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  52. Verhaegh, N. A. M., Asnaghi, D. & Lekkerkerker, H. N. W. Transient gels in colloid-polymer mixtures studied with fluorescence confocal microscopy. Physica A 264, 64–74 (1999).

    Article  CAS  ADS  Google Scholar 

  53. Starrs, L., Poon, W. C. K., Hibberd, D. J. & Robins, M. M. Collapse of transient gels in colloid-polymer mixtures. J. Phys. Condens. Matter 14, 2485–2505 (2002).

    Article  CAS  ADS  Google Scholar 

  54. Evans, R. M. L. & Starrs, L. Emergence of a stress transmission lengthscale in transient gels. J. Phys. Condens. Matter 14, 2507–2529 (2002).

    Article  CAS  ADS  Google Scholar 

  55. Weeks, J. R., van Duijneveldt, J. S. & Vincent, B. Formation and collapse of a gels of sterically stabilized colloidal particles. J. Phys. Condens. Matter 12, 9599–9606 (2000).

    Article  CAS  ADS  Google Scholar 

  56. Trappe, V., Prasad, V., Cipalletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  57. Liu, A. J. & Nagel, S. R. Nonlinear dynamics: Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  CAS  ADS  Google Scholar 

  58. Peters, R., Georgalis, Y. & Saenger, W. Accessing lysozyme nucleation with a novel dynamic light scattering detector. Acta Crystallogr. D 54, 873–877 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Tanaka, S., Ito, K., Hayakawa, R. & Ataka, M. Size and number density of precrystalline aggregates in lysozyme crystallization process. J. Chem. Phys. 111, 10330–10337 (1999).

    Article  CAS  ADS  Google Scholar 

  60. Finet, S., Bonnete, F., Frouin, J., Provost, K. & Tardieu, A. Lysozyme crystal growth, as observed by small angle x-ray scattering, proceeds without crystallisation intermediates. Eur. Biophys. J. 27, 263–271 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. McPherson, A. et al. The effects of microgravity on protein crystallisation: evidence for concentration gradients around growing crystals. J. Cryst. Growth 196, 572–586 (1999).

    Article  CAS  ADS  Google Scholar 

  62. Moussaid, A., Poon, W. C. K., Pusey, P. N. & Soliva, M. F. Structure of marginal and fully developed colloidal liquids. Phys. Rev. Lett. 82, 225–228 (1999).

    Article  CAS  ADS  Google Scholar 

  63. Ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Sear, R. Nucleation of a noncritical phase in a fluid near a critical point. J. Chem. Phys. 114, 3170–3173 (2001).

    Article  CAS  ADS  Google Scholar 

  65. Haas, C. & Drenth, J. The interface between a protein crystal and an aqueous solution and its effects on nucleation and crystal growth. J. Phys. Chem. B 104, 368–377 (2000).

    Article  CAS  Google Scholar 

  66. Poon, W. C. K. Crystallization of globular proteins. Phys. Rev. E 55, 3762–3764 (1997).

    Article  CAS  ADS  Google Scholar 

  67. Dixit, N. M. & Zukoski, C. F. Crystal nucleation rates for particles experiencing short-range attractions: Applications to proteins. J. Colloid Interface Sci. 228, 359–371 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  68. Haas, C. & Drenth, J. Understanding protein crystallization on the basis of the phase diagram. J. Cryst. Growth 196, 388–394 (1999).

    Article  CAS  ADS  Google Scholar 

  69. Soga, K. G., Melrose, J. R. & Ball, R. C. Metastable states and the kinetics of colloidal phase separation. J. Chem. Phys. 110, 2280–2288 (1999).

    Article  CAS  ADS  Google Scholar 

  70. Noro, M. G., Kern, N. & Frenkel, D. The role of long-range forces in the phase behaviour of colloids and proteins. Europhys. Lett. 48, 332–338 (1999).

    Article  CAS  ADS  Google Scholar 

  71. Thomson, J. A., Schurtenberger, P., Thurston, G. M. & Benedek, G. B. Binary liquid phase separation and critical phenomena in a protein/water solution. Proc. Natl Acad. Sci. USA 84, 7079–7083 (1987).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  72. Berland, C. R. et al. Solid-liquid phase boundaries of lens protein solutions. Proc. Natl Acad. Sci. USA 89, 1214–1218 (1992).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  73. Broide, M. L., Tominc, T. M. & Sazowsky, M. D. Using phase transitions to investigate the effect of salts on protein interactions. Phys. Rev. E 53, 5325–6335 (1996).

    Article  ADS  Google Scholar 

  74. Muschol, M. & Rosenberger, F. Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J. Chem. Phys. 107, 1953–1962 (1997).

    Article  CAS  ADS  Google Scholar 

  75. Asakura, S. & Oosawa, F. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954).

    Article  CAS  ADS  Google Scholar 

  76. Vrij, A. Polymers at interfaces and the interaction in colloidal dispersions. Pure Appl. Chem. 48, 471–483 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Frenkel, E. H. A. de Hoog, W. K. Kegel and W. C. K. Poon for discussions about phase pathways in colloid–polymer and protein systems. This work was supported by the Council for Chemical Sciences from the Netherlands Organisation for Scientific Research (NOW-CW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk N. W. Lekkerkerker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, V., Lekkerkerker, H. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002). https://doi.org/10.1038/416811a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416811a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing