Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical detection of spin precession in a metallic mesoscopic spin valve

Abstract

To study and control the behaviour of the spins of electrons that are moving through a metal or semiconductor is an outstanding challenge in the field of ‘spintronics’, where possibilities for new electronic applications based on the spin degree of freedom are currently being explored1,2,3,4,5. Recently, electrical control of spin coherence6 and coherent spin precession during transport7 was studied by optical techniques in semiconductors. Here we report controlled spin precession of electrically injected and detected electrons in a diffusive metallic conductor, using tunnel barriers in combination with metallic ferromagnetic electrodes as spin injector and detector. The output voltage of our device is sensitive to the spin degree of freedom only, and its sign can be switched from positive to negative, depending on the relative magnetization of the ferromagnetic electrodes. We show that the spin direction can be controlled by inducing a coherent spin precession caused by an applied perpendicular magnetic field. By inducing an average precession angle of 180°, we are able to reverse the sign of the output voltage.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Geometry of our spin valve device.
Figure 2: Spin valve effect.
Figure 3: Modulation of the output signal V/I due to spin precession as a function of a perpendicular magnetic field B, for L = 650 nm, L = 1,100 nm and L = 1,350 nm.
Figure 4: Modulation of the output signal V/I as a function of a perpendicular magnetic field B up to 3 T, for L = 1,100 nm.

References

  1. Prinz, G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    CAS  Article  Google Scholar 

  2. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    ADS  CAS  Article  Google Scholar 

  3. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    ADS  CAS  Article  Google Scholar 

  4. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    ADS  CAS  Article  Google Scholar 

  5. Hernando, D. H., Nazarov, Yu. V., Brataas, V. & Bauer, G. E. W. Conductance modulation by spin precession in noncollinear ferromagnet normal-metal ferromagnet systems. Phys. Rev. B 62, 5700–5712 (2000).

    ADS  Article  Google Scholar 

  6. Salis, G. et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001).

    ADS  CAS  Article  Google Scholar 

  7. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    ADS  CAS  Article  Google Scholar 

  8. Schmidt, G. et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    ADS  CAS  Article  Google Scholar 

  9. Rashba, E. I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    ADS  CAS  Article  Google Scholar 

  10. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420–184428 (2001).

    ADS  Article  Google Scholar 

  11. Jackel, L. D., Howard, R. E., Hu, E. L., Tennant, D. M. & Grabbe, P. 50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching. Appl. Phys. Lett. 39, 268–270 (1981).

    ADS  CAS  Article  Google Scholar 

  12. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 224–227 (1975).

    ADS  Article  Google Scholar 

  13. Van Son, P., van Kempen, H. & Wyder, P. Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. Phys. Rev. Lett. 58, 2271–2273 (1987).

    ADS  CAS  Article  Google Scholar 

  14. Jedema, F. J., Nijboer, M. S., Filip, A. T. & van Wees, B. J. Spin injection and spin accumulation in permalloy-copper mesoscopic spin valves.Preprint cond-mat/0111092 at 〈http://xxx.lanl.gov〉 (2002); Phys. Rev. B (submitted).

  15. Johnson, M. Spin accumulation in gold films. Phys. Rev. Lett. 70, 2142–2145 (1993).

    ADS  CAS  Article  Google Scholar 

  16. Papaconstantopoulos, D. A. Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986).

    Google Scholar 

  17. Meservey, R. & Tedrow, P. M. Surface relaxation times of conduction-electron spins in superconductors and normal metals. Phys. Rev. Lett. 41, 805–808 (1978).

    ADS  CAS  Article  Google Scholar 

  18. Monod, P. & Beneu, F. Conduction-electron spin flip by phonons in metals: Analysis of experimental data. Phys. Rev. B 19, 911–916 (1979).

    ADS  CAS  Article  Google Scholar 

  19. Grimaldi, C. & Fulde, P. Spin-orbit scattering effects on the phonon emission and absorption in superconducting tunneling junctions. Phys. Rev. Lett. 77, 2550–2553 (1996).

    ADS  CAS  Article  Google Scholar 

  20. Fabian, J. & Das Sarma, S. Phonon-induced spin relaxation of conduction electrons in aluminium. Phys. Rev. Lett. 83, 1211–1214 (1999).

    ADS  CAS  Article  Google Scholar 

  21. Johnson, M. & Silsbee, R. H. Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface. Phys. Rev. B 37, 5312–5325 (1988).

    ADS  CAS  Article  Google Scholar 

  22. Johnson, M. & Silsbee, R. H. Spin-injection experiment. Phys. Rev. B 73, 5326–5335 (1988).

    ADS  Article  Google Scholar 

  23. Rijks, Th. G. S. M., Coehoorn, R., de Jong, M. J. M. & de Jonge, W. J. M. Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers. Phys. Rev. B 51, 283–291 (1995).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Stichting Fundamenteel Onderzoek der Materie (FOM) and NEDO (project ‘nano-scale control of magnetoelectronics for device applications’) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Jedema.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jedema, F., Heersche, H., Filip, A. et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002). https://doi.org/10.1038/416713a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416713a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing