Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays


Small molecules that alter protein function provide a means to modulate biological networks with temporal resolution. Here we demonstrate a potentially general and scalable method of identifying such molecules by application to a particular protein, Ure2p, which represses the transcription factors Gln3p and Nil1p1,2,3. By probing a high-density microarray of small molecules generated by diversity-oriented synthesis with fluorescently labelled Ure2p, we performed 3,780 protein-binding assays in parallel and identified several compounds that bind Ure2p. One compound, which we call uretupamine, specifically activates a glucose-sensitive transcriptional pathway downstream of Ure2p. Whole-genome transcription profiling and chemical epistasis demonstrate the remarkable Ure2p specificity of uretupamine and its ability to modulate the glucose-sensitive subset of genes downstream of Ure2p. These results demonstrate that diversity-oriented synthesis and small-molecule microarrays can be used to identify small molecules that bind to a protein of interest, and that these small molecules can regulate specific functions of the protein.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The library synthesis and identification of uretupamine.
Figure 2: Studies in vivo, dose–response and structure–activity relationships of uretupamine.
Figure 3: Transcription profiling of treatment with uretupamine.
Figure 4: Glucose-sensitive signalling and a model of Ure2p function.


  1. Blinder, D., Coschigano, P. W. & Magasanik, B. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 178, 4734–4736 (1996).

    Article  CAS  Google Scholar 

  2. Beck, T. & Hall, M. N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689–692 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Cunningham, T. S., Andhare, R. & Cooper, T. G. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J. Biol. Chem. 275, 14408–14414 (2000).

    Article  CAS  Google Scholar 

  4. Wiemann, S. et al. Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Res. 11, 422–435 (2001).

    Article  CAS  Google Scholar 

  5. Narahashi, T., Moore, J. W. & Scott, W. R. Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. Gen. Physiol. 47, 965–974 (1964).

    Article  CAS  Google Scholar 

  6. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  Google Scholar 

  7. Coschigano, P. W. & Magasanik, B. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol. Cell. Biol. 11, 822–832 (1991).

    Article  CAS  Google Scholar 

  8. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Hardwick, J. S., Kuruvilla, F. G., Tong, J. K., Shamji, A. F. & Schreiber, S. L. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl Acad. Sci. USA 96, 14866–14870 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Cardenas, M. E., Cutler, N. S., Lorenz, M. C., Di Como, C. J. & Heitman, J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13, 3271–3279 (1999).

    Article  CAS  Google Scholar 

  11. Sternson, S. M., Louca, J. B., Wong, J. C. & Schreiber, S. L. Split-pool synthesis of 1,3-dioxanes leading to arrayed stock solutions of single compounds sufficient for multiple phenotypic and protein-binding assays. J. Am. Chem. Soc. 123, 1740–1747 (2001).

    Article  CAS  Google Scholar 

  12. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Blackwell, H. E. et al. A one-bead, one-stock solution approach to chemical genetics: part 1. Chem. Biol. 8, 1167–1182 (2001).

    Article  CAS  Google Scholar 

  14. Clemons, P. A. et al. A one-bead, one-stock solution approach to chemical genetics: part 2. Chem. Biol. 8, 1183–1195 (2001).

    Article  CAS  Google Scholar 

  15. MacBeath, G., Koehler, A. N. & Schreiber, S. L. Printing small molecules as microarrays and detecting protein–ligand interactions en masse. J. Am. Chem. Soc. 121, 7967–7968 (1999).

    Article  CAS  Google Scholar 

  16. Hergenrother, P. J., Depew, K. M. & Schreiber, S. L. Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J. Am. Chem. Soc. 122, 7849–7850 (2000).

    Article  CAS  Google Scholar 

  17. Xu, S., Falvey, D. A. & Brandriss, M. C. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 2321–2330 (1995).

    Article  CAS  Google Scholar 

  18. Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. 4, 1293–1301 (1998).

    Article  CAS  Google Scholar 

  19. Shamji, A. F., Kuruvilla, F. G. & Schreiber, S. L. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr. Biol. 10, 1574–1581 (2000).

    Article  CAS  Google Scholar 

  20. Kuruvilla, F. G., Shamji, A. F. & Schreiber, S. L. Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors. Proc. Natl Acad. Sci. USA 98, 7283–7288 (2001).

    Article  ADS  CAS  Google Scholar 

  21. Kuruvilla, F. G., Park P. J. & Schreiber, S. L. Vector algebra in the analysis of genome-wide expression data. Genome Biol. 3(3), 0011.1–0011.11 (2002).

    Google Scholar 

  22. Bertram, P. G. et al. Tripartite regulation of Gln3p by TOR, Ure2p and phosphatases. J. Biol. Chem. 275, 35727–35733 (2000).

    Article  CAS  Google Scholar 

  23. Causton, H. C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337 (2001).

    Article  CAS  Google Scholar 

  24. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  25. Kornberg, H. L. & Krebs, H. A. Synthesis of cell constituents from C2 units by a modified tricarboxylic acid cycle. Nature 179, 988–991 (1957).

    Article  ADS  CAS  Google Scholar 

  26. Bogonez, E., Machado, A. & Satrustegui, J. Ammonia accumulation in acetate-growing yeast. Biochim. Biophys. Acta 733, 234–241 (1983).

    Article  CAS  Google Scholar 

  27. Edskes, H. K., Hanover, J. A. & Wickner, R. B. Mks1p is a regulator of nitrogen catabolism upstream of Ure2p in Saccharomyces cerevisiae. Genetics 153, 585–594 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Edskes, H. K. & Wickner, R. B. A protein required for prion generation: [URE3] induction requires the ras-regulated mks1 protein. Proc. Natl Acad. Sci. USA 97, 6625–6629 (2000).

    Article  ADS  CAS  Google Scholar 

Download references


We thank R. Melki for providing bacterially expressed Ure2p protein. F.G.K. was supported by the NIH Medical Scientist Training Program, A.F.S. by the Howard Hughes Medical Institute predoctoral fellowship, S.M.S. by the Roche and NSF predoctoral fellowships, and P.J.H. by the American Cancer Society. S.L.S. is an Investigator at the Howard Hughes Medical Institute. This research was funded by a grant from the NIGMS (GM-38627).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stuart L. Schreiber.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuruvilla, F., Shamji, A., Sternson, S. et al. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653–657 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing