Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Future projections for Mexican faunas under global climate change scenarios


Global climates are changing rapidly, with unexpected consequences1. Because elements of biodiversity respond intimately to climate as an important driving force of distributional limitation2, distributional shifts and biodiversity losses are expected3,4. Nevertheless, in spite of modelling efforts focused on single species2 or entire ecosystems5, a few preliminary surveys of fauna-wide effects6,7, and evidence of climate change-mediated shifts in several species8,9, the likely effects of climate change on species' distributions remain little known, and fauna-wide or community-level effects are almost completely unexplored6. Here, using a genetic algorithm and museum specimen occurrence data, we develop ecological niche models for 1,870 species occurring in Mexico and project them onto two climate surfaces modelled for 2055. Although extinctions and drastic range reductions are predicted to be relatively few, species turnover in some local communities is predicted to be high (>40% of species), suggesting that severe ecological perturbations may result.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Example of analyses of effects of global climate change on a species' (Ortalis poliocephala) potential geographic distribution.
Figure 2
Figure 3: Modelled species turnover in biological communities (1,870 species) across Mexico.


  1. 1

    Houghton, J. T. et al. (eds) IPCC Third Assessment Report: Climate Change 2001 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  2. 2

    Johnston, K. M. & Schmitz, O. J. Wildlife and climate change: Assessing the sensitivity of selected species to simulated doubling of atmospheric CO2 . Glob. Change Biol. 3, 531–544 (1997).

    ADS  Article  Google Scholar 

  3. 3

    Dobson, A., Jolly, A. & Rubenstein, D. The greenhouse effect and biological diversity. Trends Ecol. Evol. 4, 64–68 (1989).

    Article  Google Scholar 

  4. 4

    Chapin, F. S. I. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Woodward, F. I., Lomas, M. R. & Betts, R. A. Vegetation-climate feedback in a greenhouse world. Phil. Trans. R. Soc. Lond. B 353, 29–39 (1998).

    Article  Google Scholar 

  6. 6

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1773 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Price, J. Modeling the potential impacts of climate change on the summer distributions of Massachusetts passerines. Birds Obs. 28, 224–230 (2000).

    Google Scholar 

  8. 8

    Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B 265, 1867–1870 (1998).

    Article  Google Scholar 

  9. 9

    Parmesan, C. Climate and species' range. Nature 382, 765–766 (1996).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Soberon, J. Linking biodiversity information sources. Trends Ecol. Evol. 14, 291 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Peterson, A. T. et al. Effects of global climate change on geographic distributions of Mexican Cracidae. Ecol. Model. 144, 21–30 (2001).

    Article  Google Scholar 

  12. 12

    Peterson, A. T. Predicting species' geographic distributions based on ecological niche modeling. Condor 103, 599–605 (2001).

    Article  Google Scholar 

  13. 13

    Koopowitz, H., Thornhill, A. D. & Andersen, M. A general stochastic model for the prediction of biodiversity losses based on habitat conversion. Conserv. Biol. 8, 452–438 (1994).

    Article  Google Scholar 

  14. 14

    Davis, A J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Peterson, A. T. & Vieglais, D. A. Predicting species invasions using ecological niche modeling. BioScience 51, 363–371 (2001).

    Article  Google Scholar 

  16. 16

    Sánchez-Cordero, V. & Martínez-Meyer, E. Museum specimen data predict crop damage by tropical rodents. Proc. Natl Acad. Sci. USA 97, 7074–7077 (2000).

    ADS  Article  Google Scholar 

  17. 17

    Peterson, A. T., Stockwell, D. R. B. & Kluza, D. A. in Predicting Species Occurrences: Issues of Scale and Accuracy (ed. Scott, J. M.) (Island, Washington DC, in the press).

  18. 18

    Stockwell, D. R. B. & Peters, D. P. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geograph. Inform. Systems 13, 143–158 (1999).

    Article  Google Scholar 

  19. 19

    Peterson, A. T. & Navarro-Sigüenza, A. G. Alternate species concepts as bases for determining priority conservation areas. Conserv. Biol. 13, 427–431 (1999).

    Article  Google Scholar 

  20. 20

    Peterson, A. T., Navarro-Sigüenza, A. G. & Benítez-Diaz, H. The need for continued scientific collecting: A geographic analysis of Mexican bird specimens. Ibis 140, 288–294 (1998).

    Article  Google Scholar 

  21. 21

    Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Llorente-Bousquets, J., Luis, A. & Vargas, I. Papilionidae y Pieridae de México: Distribución Geográfica e Ilustración (Universidad Nacional Autónoma de México, Mexico City, 1997).

    Google Scholar 

  23. 23

    Tobler, W. R. Smooth pycnophylactic interpolation of geographic regions. J. Am. Stat. Ass. 74, 519–530 (1979).

    MathSciNet  CAS  Article  Google Scholar 

  24. 24

    Carson, D. J. Climate modelling: achievements and prospects. Q. J. R. Meteorol. Soc. 125, 1–27 (1999).

    ADS  Article  Google Scholar 

  25. 25

    Holt, R. D. & Gaines, M. S. Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol. Ecol. 6, 433–447 (1992).

    Article  Google Scholar 

  26. 26

    Grinnell, J. Field tests of theories concerning distributional control. Am. Nat. 51, 115–128 (1917).

    Article  Google Scholar 

  27. 27

    MacArthur, R. Geographical Ecology (Princeton Univ. Press, Princeton, 1972).

    Google Scholar 

  28. 28

    Austin, M. P., Nicholls, A. O. & Margules, C. R. Measurement of the realized qualitative niche: Environmental niches of five Eucalyptus species. Ecol. Monogr. 60, 161–177 (1990).

    Article  Google Scholar 

  29. 29

    Peterson, A. T., Ball, L. G. & Cohoon, K. C. Predicting distributions of tropical birds. Ibis 144, e27–e32 (2002).

    Article  Google Scholar 

Download references


We thank A. G. Navarro-Sigüenza, J. E. Llorente-Bousquets, A. M. Luis, I. Vargas and L. Oniate for assembling distributional data, C. Thomas for help and advice, and E. Martínez-Meyer, G. Jiménez-Casas, S. Egbert and K. P. Price for collaboration. This research was supported by the US National Science Foundation, and grants from CONACyT and DGAPA to J. Soberón and V. Sánchez-Cordero.

Author information



Corresponding author

Correspondence to A. Townsend Peterson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peterson, A., Ortega-Huerta, M., Bartley, J. et al. Future projections for Mexican faunas under global climate change scenarios. Nature 416, 626–629 (2002).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing