Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen

Abstract

The quest for metallic hydrogen at high pressures represents a longstanding problem in condensed matter physics1,2. Recent calculations3,4,5,6 have predicted that solid hydrogen should become a molecular metal at pressures above 300 GPa, before transforming into an alkali metal; but the strong quantum nature of the problem makes the predictions difficult. Over a decade ago, an optical study7 of hydrogen was made using a diamond anvil cell to reach 250 GPa. However, despite many subsequent efforts, quantitative studies8,9,10,11 at higher pressures have proved difficult and their conclusions controversial. Here we report optical measurements of solid hydrogen up to a pressure of 320 GPa at 100 K. The vibron signature of the H2 molecule persists to at least 316 GPa; no structural changes are detected above 160 GPa, and solid hydrogen is observed to turn completely opaque at 320 GPa. We measure the absorption edge of hydrogen above 300 GPa, observing features characteristic of a direct electronic bandgap. This is at odds with the most recent theoretical calculations that predict much larger direct transition energies and the closure of an indirect gap3,4,5,6. We predict that metal hydrogen should be observed at about 450 GPa when the direct gap closes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical measurements in solid hydrogen at ultra-high pressure.
Figure 2: Pressure shift of the Raman H2 vibron.
Figure 3: Exciton and direct bandgap of hydrogen as a function of density.

Similar content being viewed by others

References

  1. Wigner, E. & Huntington, H. B. On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764–770 (1935).

    Article  ADS  CAS  Google Scholar 

  2. Maksimov, E. G. & Shilov, Y. I. Hydrogen at high pressure. Phys. Uspekhi 42, 1121–1138 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Johnson, K. & Ashcroft, N. W. Structure and band gap closure in dense hydrogen. Nature 403, 632–635 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Stadele, M. & Martin, R. M. Metallization of molecular hydrogen: prediction from exact-exchange calculations. Phys. Rev. Lett. 84, 6070–6073 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Natoli, V., Martin, R. M. & Ceperley, D. Crystal structure of molecular hydrogen at high pressure. Phys. Rev. Lett. 74, 1601–1604 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Nagao, K., Nagara, H. & Matsubara, S. Structures of hydrogen at megabar pressures. Phys. Rev. B 56, 2295–2298 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Mao, H. K. & Hemley, R. J. Optical studies of hydrogen above 200 GPa: Evidence for metallization by band overlap. Science 244, 1462–1465 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Narayana, C., Luo, H., Oroloff, J. & Ruoff, A. L. Solid hydrogen at 342 GPa: no evidence for an alkali metal. Nature 393, 46–49 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Goncharov, A. F., Hemley, R. J., Mao, H. K. & Shu, J. New high pressure excitations in parahydrogen. Phys. Rev. Lett. 80, 101–104 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Goncharov, A., Gregoryanz, E., Hemley, R. & Mao, H. K. Proc. Natl Acad. Sci. USA 98, 14234–14237 (2001).

    Article  ADS  CAS  Google Scholar 

  11. Chen, N., Sterer, E. & Silvera, I. F. Extended infrared studies of high pressure hydrogen. Phys. Rev. Lett. 76, 1663–1666 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Weir, S. J., Mitchell, A. C. & Nellis, W. J. Metallization of fluid molecular hydrogen at 140 GPa. Phys. Rev. Lett. 76, 1860–1863 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Collins, G. W. et al. Measurements of the equation of state of deuterium at the fluid insulator-metal transition. Science 281, 1178–1181 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Loubeyre, P. et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383, 702–704 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 Kbar under quasihydrostatic conditions. J. Geophys. Res. B 91, 4673–4676 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Goncharov, L. F. et al. Invariant points and phase transitions in deuterium at megabar pressures. Phys. Rev. Lett. 75, 2514–2517 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Cardona, M. in Topics in Applied Physics (eds Cardona, M. & Guntherodt, G.) Vol. 50, 19–178 (Springer, New York, 1982).

    Google Scholar 

  18. Ruoff, A. L., Luo, H. & Vohra, Y. K. The closing diamond anvil optical window in multimegabar research. J. Appl. Phys. 69, 6413–6416 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Inoue, K., Kanzaki, H. & Suga, S. Fundamental spectra of solid hydrogen. Solid State Commun. 30, 627–629 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Van Straaten, J. & Silvera, I. F. Pressure dependence of the optical absorption edge of solid hydrogen in a diamond anvil cell. Phys. Rev. B 37, 6478–6481 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Hemley, R. J., Hanfland, M. & Mao, H. K. High pressure dielectric measurements of solid hydrogen to 170 GPa. Nature 350, 488–491 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Garcia, H. et al. Dielectric properties of solid molecular hydrogen at high pressure. Phys. Rev. B 45, 9809–9715 (1992).

    Article  Google Scholar 

  23. Dash, W. C. & Newman, R. Intrinsic optical absorption in single crystal germanium and silicon at 77° K and 300° K. Phys. Rev. 99, 1151–1155 (1955).

    Article  ADS  CAS  Google Scholar 

  24. Welber, B., Cardona, M., Kim, C. K. & Rodriguez, S. Dependence of the direct energy gap of GaAs on hydrostatic pressure. Phys. Rev. B 12, 5729–5738 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Eggert for interesting discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Loubeyre.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loubeyre, P., Occelli, F. & LeToullec, R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature 416, 613–617 (2002). https://doi.org/10.1038/416613a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416613a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing