A global disorder of imprinting in the human female germ line


Imprinted genes are expressed differently depending on whether they are carried by a chromosome of maternal or paternal origin. Correct imprinting is established by germline-specific modifications; failure of this process underlies several inherited human syndromes1,2,3,4,5. All these imprinting control defects are cis-acting, disrupting establishment or maintenance of allele-specific epigenetic modifications across one contiguous segment of the genome. In contrast, we report here an inherited global imprinting defect. This recessive maternal-effect mutation disrupts the specification of imprints at multiple, non-contiguous loci, with the result that genes normally carrying a maternal methylation imprint assume a paternal epigenetic pattern on the maternal allele. The resulting conception is phenotypically indistinguishable from an androgenetic complete hydatidiform mole6, in which abnormal extra-embryonic tissue proliferates while development of the embryo is absent or nearly so. This disorder offers a genetic route to the identification of trans-acting oocyte factors that mediate maternal imprint establishment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bisulphite sequencing of DMRs in imprinted genes.
Figure 2: Bisulphite analysis of GNAS1.


  1. 1

    Sutcliffe, J. S. et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nature Genet. 8, 52–58 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Buiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Reik, W. et al. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum. Mol. Genet. 4, 2379–2385 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Gardner, R. J. et al. An imprinted locus associated with transient neonatal diabetes mellitus. Hum. Mol. Genet. 9, 589–596 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Liu, J. et al. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J. Clin. Invest. 106, 1167–1174 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Kajii, T. & Ohama, K. Androgenetic origin of hydatidiform mole. Nature 268, 633–634 (1977).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Moglabey, Y. B. et al. Genetic mapping of a maternal locus responsible for familial hydatidiform moles. Hum. Mol. Genet. 8, 667–671 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Helwani, M. N. et al. A familial case of recurrent hydatidiform molar pregnancies with biparental genomic contribution. Hum. Genet. 105, 112–115 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Fisher, R. A., Khatoon, R., Paradinas, F. J., Roberts, A. P. & Newlands, E. S. Repetitive complete hydatidiform mole can be biparental in origin and either male or female. Hum. Reprod. 15, 594–598 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Clark, S. J., Harrison, J., Paul, C. L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Kerjean, A. et al. Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum. Mol. Genet. 9, 2183–2187 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Lee, M. P. et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl Acad. Sci. USA 96, 5203–5208 (1999).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Ohta, T. et al. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am. J. Hum. Genet. 64, 397–413 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Engemann, S. et al. Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum. Mol. Genet. 9, 2691–2706 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Shemer, R., Birger, Y., Riggs, A. D. & Razin, A. Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc. Natl Acad. Sci. USA 94, 10267–10272 (1997).

    ADS  CAS  Article  Google Scholar 

  16. 16

    El-Maarri, O. et al. Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nature Genet. 27, 341–344 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Kaneko-Ishino, T. et al. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nature Genet. 11, 52–59 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Murphy, S. K., Wylie, A. A. & Jirtle, R. L. Imprinting of PEG3, the human homologue of a mouse gene involved in nurturing behavior. Genomics 71, 110–117 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Hayward, B. E. et al. The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc. Natl Acad. Sci. USA 95, 10038–10043 (1998).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Hayward, B. E., Moran, V., Strain, L. & Bonthron, D. T. Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc. Natl Acad. Sci. USA 95, 15475–15480 (1998).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Hayward, B. E. & Bonthron, D. T. An imprinted antisense transcript at the human GNAS1 locus. Hum. Mol. Genet. 9, 835–841 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Liu, J., Yu, S., Litman, D., Chen, W. & Weinstein, L. S. Identification of a methylation imprint mark within the mouse Gnas locus. Mol. Cell Biol. 20, 5808–5817 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Smilinich, N. J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc. Natl Acad. Sci. USA 96, 8064–8069 (1999).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Kamiya, M. et al. The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum. Mol. Genet. 9, 453–460 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Reik, W. & Walter, J. Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nature Genet. 27, 255–256 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Bourc’his, D., Xu, G.-L., Lin, C.-S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001); advance online publication, 29 November 2001 (DOI 10,1126/Science.1065848).

    ADS  Article  Google Scholar 

  27. 27

    Strain, L., Warner, J. P., Johnston, T. & Bonthron, D. T. A human parthenogenetic chimaera. Nature Genet. 11, 164–169 (1995).

    CAS  Article  Google Scholar 

Download references


We thank R. Fisher for supplying androgenetic CHM DNAs, and G. Taylor for Prader–Willi and chorionic villus sample DNA samples. This work was supported by the Wellcome Trust.

Author information



Corresponding author

Correspondence to David T. Bonthron.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Judson, H., Hayward, B., Sheridan, E. et al. A global disorder of imprinting in the human female germ line. Nature 416, 539–542 (2002). https://doi.org/10.1038/416539a

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing