Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses


A fundamental tenet of cerebellar learning theories asserts that climbing fibre afferents from the inferior olive provide a teaching signal that promotes the gradual adaptation of movements1,2,3. Data from several forms of motor learning provide support for this tenet4,5,6,7,8. In pavlovian eyelid conditioning, for example, where a tone is repeatedly paired with a reinforcing unconditioned stimulus like periorbital stimulation, the unconditioned stimulus promotes acquisition of conditioned eyelid responses by activating climbing fibres9,10,11,12. Climbing fibre activity elicited by an unconditioned stimulus is inhibited during the expression of conditioned responses9,10,11—consistent with the inhibitory projection from the cerebellum to inferior olive6,13. Here, we show that inhibition of climbing fibres serves as a teaching signal for extinction, where learning not to respond is signalled by presenting a tone without the unconditioned stimulus. We used reversible infusion of synaptic receptor antagonists to show that blocking inhibitory input to the climbing fibres prevents extinction of the conditioned response, whereas blocking excitatory input induces extinction. These results, combined with analysis of climbing fibre activity in a computer simulation of the cerebellar–olivary system14,15,16, suggest that transient inhibition of climbing fibres below their background level is the signal that drives extinction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infusion of picrotoxin into the inferior olive prevented extinction of conditioned responses.
Figure 2: Infusion of NBQX into the inferior olive caused extinction of conditioned responses during tone plus unconditioned stimulus trials.
Figure 3: Activity of simulated climbing fibres and cerebellar nucleus cells during acquisition and extinction training.

Similar content being viewed by others


  1. Marr, D. A theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–470 (1969).

    Article  CAS  Google Scholar 

  2. Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

    Article  Google Scholar 

  3. Ito, M. Cerebellar control of the vestibulo-ocular reflex—around the flocculus hypothesis. Annu. Rev. Neurosci. 5, 275–296 (1982).

    Article  CAS  Google Scholar 

  4. Thach, W. T., Goodkin, H. P. & Keating, J. G. The cerebellum and the adaptive coordination of movement. Annu. Rev. Neurosci. 15, 403–442 (1992).

    Article  CAS  Google Scholar 

  5. Simpson, J. I., Wylie, D. R. & de Zeeuw, C. I. On climbing fiber signals and their consequence(s). Behav. Brain Sci. 19, 384–398 (1996).

    Article  Google Scholar 

  6. de Zeeuw, C. I. et al. Microcircuitry and function of the inferior olive. Trends Neurosci. 21, 391–400 (1998).

    Article  CAS  Google Scholar 

  7. Thompson, R. F., Thompson, J. K., Kim, J. J., Krupa, D. J. & Shinkman, P. G. The nature of reinforcement in cerebellar learning. Neurobiol. Learn. Mem. 70, 150–176 (1998).

    Article  CAS  Google Scholar 

  8. Raymond, J . L., Lisberger, S. G. & Mauk, M. D. The cerebellum: a neuronal learning machine? Science 272, 1126–1131 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Hesslow, G. & Ivarsson, M. Inhibition of the inferior olive during conditioned responses in the decerebrate ferret. Exp. Brain Res. 110, 36–46 (1996).

    Article  CAS  Google Scholar 

  10. Sears, L. L. & Steinmetz, J. E. Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Res. 545, 114–122 (1991).

    Article  CAS  Google Scholar 

  11. Kim, J. J., Krupa, D. J. & Thompson, R. F. Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science 279, 570–573 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Mauk, M. D., Steinmetz, J. E. & Thompson, R. F. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc. Natl Acad. Sci. USA 83, 5349–5353 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Voogd, J. & Glickstein, M. The anatomy of the cerebellum. Trends Neurosci. 21, 370–375 (1998).

    Article  CAS  Google Scholar 

  14. Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M. & Mauk, M. D. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20, 5516–5525 (2000).

    Article  CAS  Google Scholar 

  15. Medina, J. F. & Mauk, M. D. Computer simulation of cerebellar information processing. Nature Neurosci. 3 (Suppl.), 1205–1211 (2000).

    Article  CAS  Google Scholar 

  16. Medina, J. F., Garcia, K. S. & Mauk, M. D. A mechanism for savings in the cerebellum. J. Neurosci. 21, 4081–4089 (2001).

    Article  CAS  Google Scholar 

  17. Lang, E . J., Sugihara, I. & Llinas, R. GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J. Neurophysiol. 76, 255–275 (1996).

    Article  CAS  Google Scholar 

  18. Demer, J. L., Echelman, D. A. & Robinson, D. A. Effects of electrical stimulation and reversible lesions of the olivocerebellar pathway on Purkinje cell activity in the flocculus of the cat. Brain Res. 346, 22–31 (1985).

    Article  CAS  Google Scholar 

  19. Keating, J. G. & Thach, W. T. Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J. Neurophysiol. 73, 1329–1340 (1995).

    Article  CAS  Google Scholar 

  20. Ramnani, N. & Yeo, C. H. Reversible inactivations of the cerebellum prevent the extinction of conditioned nictitating membrane responses in rabbits. J. Physiol. (Lond.) 495, 159–168 (1996).

    Article  CAS  Google Scholar 

  21. Linden, D . J. & Connor, J. A. Cellular mechanisms of long-term depression in the cerebellum. Curr. Opin. Neurobiol. 3, 401–406 (1993).

    Article  CAS  Google Scholar 

  22. Sakurai, M. Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J. Physiol. (Lond.) 394, 463–480 (1987).

    Article  CAS  Google Scholar 

  23. Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neurosci. 1, 304–309 (1998).

    Article  CAS  Google Scholar 

  24. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

    Article  CAS  Google Scholar 

  25. Fanselow, M. S. Pavlovian conditioning, negative feedback, and blocking: mechanisms that regulate association formation. Neuron 20, 625–627 (1998).

    Article  CAS  Google Scholar 

Download references


We thank N. Taylor for technical assistance and J. Chin, N. Waxham and J. Knierim for comments on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael D. Mauk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, J., Nores, W. & Mauk, M. Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416, 330–333 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing