Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ferromagnetism in one-dimensional monatomic metal chains

Abstract

Two-dimensional systems, such as ultrathin epitaxial films and superlattices, display magnetic properties distinct from bulk materials1. A challenging aim of current research in magnetism is to explore structures of still lower dimensionality2,3,4,5,6. As the dimensionality of a physical system is reduced, magnetic ordering tends to decrease as fluctuations become relatively more important7. Spin lattice models predict that an infinite one-dimensional linear chain with short-range magnetic interactions spontaneously breaks up into segments with different orientation of the magnetization, thereby prohibiting long-range ferromagnetic order at a finite temperature7,8,9. These models, however, do not take into account kinetic barriers to reaching equilibrium or interactions with the substrates that support the one-dimensional nanostructures. Here we demonstrate the existence of both short- and long-range ferromagnetic order for one-dimensional monatomic chains of Co constructed on a Pt substrate. We find evidence that the monatomic chains consist of thermally fluctuating segments of ferromagnetically coupled atoms which, below a threshold temperature, evolve into a ferromagnetic long-range-ordered state owing to the presence of anisotropy barriers. The Co chains are characterized by large localized orbital moments and correspondingly large magnetic anisotropy energies compared to two-dimensional films and bulk Co.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: STM topographs of the Pt(997) surface.
Figure 2: Co X-ray absorption spectra for parallel (μ+) and antiparallel (μ-) direction of light polarization and field-induced magnetization.
Figure 3: Magnetization of a monatomic wire array recorded at the L3 Co edge.
Figure 4: Angular dependence of the magnetization.

References

  1. Schneider, C. M. & Kirschner, J. in Handbook of Surface Science (eds Horn, K. & Scheffler, M.) 511–668 (Elsevier, Amsterdam, 2000).

    Google Scholar 

  2. Himpsel, F. J., Ortega, J. E., Mankey, G. J. & Willis, R. F. Magnetic nanostructures. Adv. Phys. 47, 511–597 (1998).

    ADS  CAS  Article  Google Scholar 

  3. Stamm, C. et al. Two-dimensional magnetic particles. Science 282, 449–451 (1998).

    ADS  CAS  Article  Google Scholar 

  4. Weinert, M. & Freeman, A. J. Magnetism of linear chains. J. Mag. Magn. Mater. 38, 23–33 (1983).

    ADS  CAS  Article  Google Scholar 

  5. Dorantes-Dávila, J. & Pastor, G. M. Magnetic anisotropy of one-dimensional nanostructures of transition metals. Phys. Rev. Lett. 81, 208–211 (1998).

    ADS  Article  Google Scholar 

  6. Pratzer, M. et al. Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes. Phys. Rev. Lett. 87, 127201-1–127201-4 (2001).

    ADS  Article  Google Scholar 

  7. Landau, L. D. & Lifshitz, E. M. Statistical Physics Vol. 5, 482 (Pergamon, London, 1959).

    Google Scholar 

  8. Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925).

    ADS  CAS  Article  Google Scholar 

  9. Mermin, N. D. & Wagner, H. Absence of ferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    ADS  CAS  Article  Google Scholar 

  10. Lieb, E. H. & Mattis, D. C. Mathematical Physics in One Dimension (Academic, New York, 1966).

    Google Scholar 

  11. De Jongh, L. J. & Miedema, A. R. Experiments on simple magnetic model systems. Adv. Phys. 23, 1–260 (1974).

    ADS  CAS  Article  Google Scholar 

  12. Röder, H. et al. Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature 366, 141–143 (1993).

    ADS  Article  Google Scholar 

  13. Gambardella, P. et al. One-dimensional metal chains on Pt vicinal surfaces. Phys. Rev. B 61, 2254–2262 (2000).

    ADS  CAS  Article  Google Scholar 

  14. Elmers, H. J. et al. Submonolayer magnetism of Fe(110) on W(110): finite width scaling of stripes and percolation between islands. Phys. Rev. Lett. 73, 898–901 (1994).

    ADS  CAS  Article  Google Scholar 

  15. Hauschild, J., Elmers, H. J. & Gradmann, U. Dipolar superferromagnetism in monolayer nanostripes of Fe(110) nanostripes on vicinal W(110) surfaces. Phys. Rev. B 57, R677–R680 (1998).

    ADS  CAS  Article  Google Scholar 

  16. Shen, J. et al. Magnetism in one dimension: Fe on Cu(111). Phys. Rev. B 56, 2340–2343 (1997).

    ADS  CAS  Article  Google Scholar 

  17. Gambardella, P. et al. Co growth on Pt(997): from monatomic chains to monolayer completion. Surf. Sci. 449, 93–103 (2000).

    ADS  CAS  Article  Google Scholar 

  18. Stöhr, J. & Nakajima, R. Magnetic properties of transition-metal multilayers studied with XMCD spectroscopy. IBM J. Res. Develop. 48, 73–88 (1998).

    Article  Google Scholar 

  19. Wu, R., Li, C. & Freeman, A. J. Structural, electronic and magnetic properties of Co/Pd(111) and Co/Pt(111). J. Mag. Magn. Mater. 99, 71–80 (1991).

    ADS  CAS  Article  Google Scholar 

  20. Thole, B. T., Cara, P., Sette, F. & van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946 (1992).

    ADS  CAS  Article  Google Scholar 

  21. Weller, D. et al. Microscopic origin of magnetic anisotropy in Au/Co/Au probed with x-ray magnetic circular dichroism. Phys. Rev. Lett. 75, 3752–3755 (1995).

    ADS  CAS  Article  Google Scholar 

  22. Chen, C. T. et al. Experimental confirmation of the XMCD sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995).

    ADS  CAS  Article  Google Scholar 

  23. Tischer, M. et al. Enhancement of orbital magnetism at surfaces: Co on Cu(100). Phys. Rev. Lett. 75, 1602–1605 (1995).

    ADS  CAS  Article  Google Scholar 

  24. Dürr, H. A. et al. Spin and orbital magnetization in self-assembled Co clusters on Au(111). Phys. Rev. B 59, R701–R704 (1999).

    ADS  Article  Google Scholar 

  25. Crangle, J. & Scott, W. R. Dilute ferromagnetic alloys. J. Appl. Phys. 36, 921–928 (1965).

    ADS  CAS  Article  Google Scholar 

  26. Bate, G. Magnetic recording materials since 1975. J. Mag. Magn. Mater. 100, 413–424 (1991).

    ADS  CAS  Article  Google Scholar 

  27. Frôta-Pessoa, S., Muniz, R. B. & Kudrnovský, J. Exchange coupling in transition-metal ferromagnets. Phys. Rev. B 62, 5293–5296 (2000).

    ADS  Article  Google Scholar 

  28. Wernsdorfer, W. et al. Experimental evidence of the Néel-Brown model of magnetization reversal. Phys. Rev. Lett. 78, 1791–1794 (1997).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Ohresser, S. S. Dhesi, K. Larsson and N. B. Brookes of beamline ID12B of the European Synchrotron Radiation Facility in Grenoble for their assistance during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gambardella.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gambardella, P., Dallmeyer, A., Maiti, K. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002). https://doi.org/10.1038/416301a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416301a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing