Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A topographically forced asymmetry in the martian circulation and climate


Large seasonal and hemispheric asymmetries in the martian climate system are generally ascribed to variations in solar heating associated with orbital eccentricity1. As the orbital elements slowly change (over a period of >104 years), characteristics of the climate such as dustiness and the vigour of atmospheric circulation are thought to vary2,3,4,5, as should asymmetries in the climate (for example, the deposition of water ice at the northern versus the southern pole). Such orbitally driven climate change might be responsible for the observed layering in Mars' polar deposits by modulating deposition of dust and water ice3,5,6. Most current theories assume that climate asymmetries completely reverse as the angular distance between equinox and perihelion changes by 180°. Here we describe a major climate mechanism that will not precess in this way. We show that Mars' global north–south elevation difference forces a dominant southern summer Hadley circulation that is independent of perihelion timing. The Hadley circulation, a tropical overturning cell responsible for trade winds, largely controls interhemispheric transport of water and the bulk dustiness of the atmosphere7,8,9,10,11. The topography therefore imprints a strong handedness on climate, with water ice and the active formation of polar layered deposits more likely in the north.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mars GCM output illustrating the Hadley circulation's strong control of water vapour transport and the global mixing of dust.
Figure 2: Mars GCM output demonstrating the annual-average bias in the tropical circulation, and that this bias is related to topography rather than the eccentric orbit of the planet.


  1. Zurek, R. W. et al. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 835–933 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  2. Ward, W. R. Climatic variations on Mars. I. Astronomical theory of insolation. J. Geophys. Res. 97, 3375–3386 (1974).

    ADS  Article  Google Scholar 

  3. Murray, B. C., Ward, W. R. & Yeung, S. C. Periodic insolation variations on Mars. Science 180, 638–640 (1973).

    ADS  CAS  Article  Google Scholar 

  4. Kieffer, H. H. & Zent, A. P. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 1180–1220 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  5. Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A. & Bilski, K. The astronomical theory of climate change on Mars. Icarus 44, 552–607 (1980).

    ADS  Article  Google Scholar 

  6. Thomas, P., Squyres, S. W., Herkenhoff, K., Howard, A. & Murray, B. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M.) 767–798 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  7. Haberle, R. M., Leovy, C. B. & Pollack, J. B. Some effects of global dust storms on the atmospheric circulation of Mars. Icarus 50, 322–367 (1982).

    ADS  Article  Google Scholar 

  8. Wilson, R. J. & Hamilton, K. Comprehensive model simulation of thermal tide in the Martian atmosphere. J. Atmos. Sci. 53, 1290–1326 (1996).

    ADS  Article  Google Scholar 

  9. Murphy, J. R. et al. Three-dimensional numerical simulation of Martian global dust storms. J. Geophys. Res. 100, 26357–26376 (1995).

    ADS  Article  Google Scholar 

  10. Houben, H., Haberle, R. M., Young, R. E. & Zent, A. P. Modeling the Martian seasonal water cycle. J. Geophys. Res. 102, 9069–9083 (1997).

    ADS  Article  Google Scholar 

  11. Richardson, M. I. & Wilson, R. J. Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model. J. Geophys. Res. (in the press).

  12. Haberle, R. M. et al. Mars atmospheric dynamics as simulated by the NASA Ames general-circulation model. 1. The zonal-mean circulation. J. Geophys. Res. 98, 3093–3123 (1993).

    ADS  Article  Google Scholar 

  13. Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24175 (1999).

    ADS  CAS  Article  Google Scholar 

  14. Oort, A. H. & Rasmussen, E. M. On the annual variation of the monthly mean meridional circulation. Mon. Weath. Rev. 98, 423–442 (1970).

    ADS  Article  Google Scholar 

  15. Peixoto, J. P. & Oort, A. H. Physics of Climate (American Institute of Physics, New York, 1992).

    Book  Google Scholar 

  16. Lindzen, R. S. & Hou, A. Y. Hadley circulation for zonally averaged heating centered off the equator. J. Atmos. Sci. 45, 2416–2427 (1988).

    ADS  Article  Google Scholar 

  17. Smith, D. E. & Zuber, M. T. The shape of Mars and the topographic signature of the hemispheric dichotomy. Science 271, 184–188 (1996).

    ADS  CAS  Article  Google Scholar 

  18. Smith, D. E. et al. The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999).

    ADS  CAS  Article  Google Scholar 

  19. Haberle, R. M. et al. Mars general circulation model simulations with MOLA topography. Icarus (submitted).

  20. Molnar, P. & Emanuel, K. A. Temperature profiles in radiative-convective equilibrium above surfaces at different heights. J. Geophys. Res. 104, 24265–24271 (1999).

    ADS  Article  Google Scholar 

  21. Clancy, R. T. et al. Water vapor saturation at low altitudes around Mars aphelion: A key to Mars climate? Icarus 122, 36–62 (1996).

    ADS  CAS  Article  Google Scholar 

  22. Richardson, M. I., Wilson, R. J. & Rodin, A. V. Water ice clouds in the Martian atmosphere: General circulation model experiments with a simple cloud scheme. J. Geophys. Res. (submitted).

  23. Ward, W. R. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 298–320 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  24. Herkenhoff, K. E. & Plaut, J. J. Surface ages and resurfacing rates of the polar layered deposits on Mars. Icarus 144, 243–253 (2000).

    ADS  Article  Google Scholar 

  25. Fenton, L. K. & Richardson, M. I. Martian surface winds: Insensitivity to orbital changes and implications for aeolian processes. J. Geophys. Res. 106, 32885–32902 (2001).

    ADS  Article  Google Scholar 

  26. Jakosky, B. M., Henderson, B. G. & Mellon, M. T. The Mars water cycle at other epochs—Recent history of the polar caps and layered terrain. Icarus 102, 286–297 (1993).

    ADS  CAS  Article  Google Scholar 

Download references


Discussions were provided by K. Emanuel, I. Held, A. Ingersoll, T. Schneider, and Y. Yung. We thank P. Gierasch for comments on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mark I. Richardson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richardson, M., Wilson, R. A topographically forced asymmetry in the martian circulation and climate. Nature 416, 298–301 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing