Review Article | Published:

Bose–Einstein condensation of atomic gases

Nature volume 416, pages 211218 (14 March 2002) | Download Citation

Subjects

Abstract

The early experiments on Bose–Einstein condensation in dilute atomic gases accomplished three long-standing goals. First, cooling of neutral atoms into their motional ground state, thus subjecting them to ultimate control, limited only by Heisenberg's uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum state, and the realization of atom lasers — devices that output coherent matter waves. And third, creation of a gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose–Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum-degenerate gases has grown, and now includes metastable and fermionic atoms. Condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Laser Manipulation of Atoms and Ions (North-Holland, Amsterdam, 1992).

  2. 2.

    et al. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 61, 935–938 (1988).

  3. 3.

    , & in Bose-Einstein Condensation in Atomic Gases (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 67–176 (IOS Press, Amsterdam, 1999).

  4. 4.

    , , & Is Bose-Einstein condensation of atomic cesium possible? Europhys. Lett. 44, 25–30 (1998).

  5. 5.

    , , , & Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

  6. 6.

    et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

  7. 7.

    , , & Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995).

  8. 8.

    et al. Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811–3814 (1998).

  9. 9.

    et al. Quasipure Bose-Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett. 87, 080403-1–080403-4 (2001).

  10. 10.

    et al. A Bose-Einstein condensate of metastable atoms. Science 292, 461–464 (2001).

  11. 11.

    et al. Bose-Einstein condensation of metastable helium. Phys. Rev. Lett. 86, 3459–3462 (2001).

  12. 12.

    , , , & Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795–1798 (2000).

  13. 13.

    et al. Bose-Einstein condensation of potassium atoms by sympathetic cooling. Science 294, 1320–1322 (2001).

  14. 14.

    , , & Decay kinetics and Bose condensation in a gas of spin-polarized triplet helium. Phys. Rev. Lett. 73, 3247–3250 (1994).

  15. 15.

    , & All-optical formation of an atomic Bose-Einstein condensate. Phys. Rev. Lett. 87, 010404-1–010404-4 (2001).

  16. 16.

    , , , & Bose-Einstein condensation in a surface microtrap. Phys. Rev. Lett. 87, 230401-1–230401-4 (2001).

  17. 17.

    , , & Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001).

  18. 18.

    et al. Transport of Bose-Einstein condensates with optical tweezers. Phys. Rev. Lett. 88, 020401-1–020401-4 (2002).

  19. 19.

    , & Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114–4122 (1993).

  20. 20.

    et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998).

  21. 21.

    , , , & Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett. 81, 69–72 (1998).

  22. 22.

    , , , & Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

  23. 23.

    , , & Sympathetic cooling of 85Rb and 87Rb. Phys. Rev. A 64, 021402-1–021402-4 (2001).

  24. 24.

    & Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999).

  25. 25.

    , , , & Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).

  26. 26.

    et al. Two species mixture of quantum degenerate Bose and Fermi gases. Preprint cond-mat/0112425 at 〈〉 (2001).

  27. 27.

    , , & Preparation of a degenerate, two-component Fermi gas by evaporation in a single beam optical trap. Preprint cond-mat/0111344 at 〈〉 (2001).

  28. 28.

    & in Bose-Einstein Condensation in Atomic Gases (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 537–553 (IOS Press, Amsterdam, 1999).

  29. 29.

    & Superfluidity in sympathetic cooling with atomic Bose-Einstein condensates. Phys. Rev. Lett. 80, 3419–3423 (1998).

  30. 30.

    Degenerate Fermion gas heating by hole creation. Phys. Rev. Lett. 87, 240403-1–240403-4 (2001).

  31. 31.

    et al. Buffer-gas loading and magnetic trapping of atomic europium. Phys. Rev. Lett. 78, 3665–3668 (1997).

  32. 32.

    , , , & Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974–4977 (1997).

  33. 33.

    & Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000).

  34. 34.

    , , , & Molecules in a Bose-Einstein condensate. Science 287, 1016–1019 (2000).

  35. 35.

    , , & Superchemistry: dynamics of coupled atomic and molecular Bose-Einstein condensates. Phys. Rev. Lett. 84, 5029–5033 (2000).

  36. 36.

    et al. Bose-Einstein condensation in a tightly confining DC magnetic trap. Phys. Rev. Lett. 77, 416–419 (1996).

  37. 37.

    , & Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

  38. 38.

    , , & Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

  39. 39.

    Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961).

  40. 40.

    Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961).

  41. 41.

    On the theory of superfluidity. J. Phys. (Moscow) 11, 23 (1947).

  42. 42.

    Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas. Phys. Rev. A 56, 1414–1423 (1997).

  43. 43.

    & Low-temperature Bose-Einstein condensates in time-dependent traps: beyond the U(1) symmetry-breaking approach. Phys. Rev. A 57, 3008–3021 (1998).

  44. 44.

    in Bose-Einstein Condensation in Atomic Gases (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 265–285 (IOS Press, Amsterdam, 1999).

  45. 45.

    , & Dynamics of trapped Bose gases at finite temperature. J. Low Temp. Phys. 116, 277–345 (1999).

  46. 46.

    et al. Bosonic stimulation in the formation of a Bose-Einstein condensate. Science 279, 1005–1007 (1998).

  47. 47.

    , & Growth of Bose-Einstein condensates from thermal vapor. Preprint cond-mat/0106642 at 〈〉 (2001).

  48. 48.

    Formation and Decay of a Bose-Einstein Condensate in Atomic Hydrogen. Thesis, MIT (2001).

  49. 49.

    , , , & Quantum kinetic theory of condensate growth: comparison of experiment and theory. Phys. Rev. Lett. 81, 5266–5269 (1998).

  50. 50.

    , , & Condensation of N bosons. II. Nonequilibrium analysis of an ideal Bose gas and the laser phase-transition analogy. Phys. Rev. A 61, 023609-1–023609-20 (2000).

  51. 51.

    , , & Quantum kinetic theory for a condensed bosonic gas. Phys. Rev. A 59, 3878–3889 (1999).

  52. 52.

    & Evolution of correlation properties and appearance of broken symmetry in the process of Bose-Einstein condensation. Phys. Rev. Lett. 79, 3331–3334 (1997).

  53. 53.

    , & Condensate growth in trapped Bose gases. Phys. Rev. Lett. 62, 063609-1–063609-16 (2000).

  54. 54.

    , , & Measurement of collective collapse in a Bose-Einstein condensate with attractive interactions. Phys. Rev. Lett. 82, 876–879 (1999).

  55. 55.

    et al. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature 412, 295–299 (2001).

  56. 56.

    , , & Experimental observation of Beliaev coupling in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2196–2199 (2001).

  57. 57.

    , , , & Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999).

  58. 58.

    et al. Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287, 97–101 (2000).

  59. 59.

    Evidence for a Bose–Einstein condensate in liquid 4He from quantum evaporation. Nature 391, 56–59 (1998).

  60. 60.

    et al. Evidence for a critical velocity in a Bose-Einstein condensed gas. Phys. Rev. Lett. 83, 2502–2505 (1999).

  61. 61.

    et al. Observation of superfluid flow in a Bose-Einstein condensed gas. Phys. Rev. Lett. 85, 2228–2231 (2000).

  62. 62.

    , , , & Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential. Phys. Rev. Lett. 86, 4447–4450 (2001).

  63. 63.

    et al. Josephson junction arrays with Bose-Einstein condensates. Science 293, 843–846 (2001).

  64. 64.

    & Scissors mode and superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett. 83, 4452–4455 (1999).

  65. 65.

    et al. Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett. 84, 2056–2059 (2000).

  66. 66.

    & Preparing topological states of a Bose–Einstein condensate. Nature 401, 568–572 (1999).

  67. 67.

    et al. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999).

  68. 68.

    , , & Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).

  69. 69.

    , , & Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476–479 (2001).

  70. 70.

    , , & Driving Bose-Einstein-condensate vorticity with a rotating normal cloud. Phys. Rev. Lett. 87, 210403-1–210403-4 (2001).

  71. 71.

    et al. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001).

  72. 72.

    , , , & Vortex nucleation in Bose-Einstein condensates in an oblate, purely magnetic potential. Phys. Rev. Lett. 88, 010405-1–010405-4 (2002).

  73. 73.

    & Vortices in a trapped dilute Bose-Einstein condensate. J. Phys. Condens. Matter 13, R135–R194 (2001).

  74. 74.

    , , & Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates. Phys. Rev. Lett. 86, 564–567 (2001).

  75. 75.

    , , & Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. Phys. Rev. Lett. 86, 4443–4446 (2001).

  76. 76.

    & Dynamic instability of a rotating Bose-Einstein condensate. Phys. Rev. Lett. 87, 190402-1–190402-4 (2001).

  77. 77.

    & Shape deformations and angular-momentum transfer in trapped Bose-Einstein condensates. Phys. Rev. A 63, 011601-1–011601-4 (2001).

  78. 78.

    Local vortex generation and the surface mode spectrum of large Bose-Einstein condensates. Phys. Rev. Lett. 87, 240401-1–240401-4 (2001).

  79. 79.

    Vortices near surfaces of Bose-Einstein condensates. Preprint cond-mat/0110389 at 〈〉 (2001).

  80. 80.

    , , & Vortex shedding and drag in dilute Bose-Einstein condensates. J. Phys. B 33, 4069–4078 (2000).

  81. 81.

    & Superfluid-to-solid crossover in a rotating Bose-Einstein condensate. Phys. Rev. Lett. 87, 190401-1–190401-4 (2001).

  82. 82.

    , , , & Dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998).

  83. 83.

    et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998).

  84. 84.

    & Wave-function monopoles in Bose-Einstein condensates. Phys. Rev. A 60, R2669–R2672 (1999).

  85. 85.

    , & Monopoles in an antiferromagnetic Bose-Einstein condensate. Phys. Rev. Lett. 87, 120407-1–120407-4 (2001).

  86. 86.

    Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998).

  87. 87.

    & Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature 411, 918–920 (2001).

  88. 88.

    & Creating vortex rings and three-dimensional skyrmions in Bose-Einstein condensates. Phys. Rev. Lett. 86, 3934–3937 (2001).

  89. 89.

    , & Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett. 81, 5257–5261 (1998).

  90. 90.

    et al. Realization of Bose-Einstein condensates in lower dimensions. Phys. Rev. Lett. 87, 130402-4–130402-4 (2001).

  91. 91.

    & Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions. Phys. Rev. A 54, 656–660 (1996).

  92. 92.

    , & Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000).

  93. 93.

    et al. Observation of phase fluctuations in elongated Bose-Einstein condensates. Phys. Rev. Lett. 87, 160406-1–160406-4 (2001).

  94. 94.

    , & Trapped one-dimensional Bose gas as a Luttinger liquid. Phys. Rev. A 58, R3395–R3398 (1998).

  95. 95.

    Atomic scattering in presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998).

  96. 96.

    & Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases. Phys. Rev. A 56, R1083–R1086 (1997).

  97. 97.

    , , , & Squeezed states in a Bose-Einstein condensate. Science 291, 2386–2389 (2001).

  98. 98.

    , , , & Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

  99. 99.

    , , , & Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

  100. 100.

    in Bose-Einstein Condensation in Atomic Gases (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 351–390 (IOS Press, Amsterdam, 1999).

Download references

Acknowledgements

We are indebted to the whole BEC group at MIT for discussions. Our work is supported by NSF, ONR, ARO, NASA, and the David and Lucile Packard Foundation.

Author information

Affiliations

  1. Research Laboratory for Electronics, MIT-Harvard Center for Ultracold Atoms, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • James R. Anglin
    •  & Wolfgang Ketterle

Authors

  1. Search for James R. Anglin in:

  2. Search for Wolfgang Ketterle in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/416211a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing