
non-taster alleles of T1R3 used contructs of complementary DNA coding for T1R3 from
C57BL/6 and 129/Sv mice, respectively7 – 11,21.

Immunoprecipitation
Antibodies against T1R3 were generated using a peptide corresponding to residues 824–
845 of the mouse receptor. PEAKrapid cells (Edge Biosciences) were transfected with HA–
T1R1, HA–T1R2 and T1R3 in various combinations and were gathered and disrupted in
buffer containing 50 mM Tris-HCl at pH 7.5, 300 mM NaCl, 1% NP-40, 0.5% w/v sodium
deoxycholate, and protease inhibitors (Roche). Lysates were incubated overnight at 4 8C
with mouse monoclonal anti-HA antibody (Santa Cruz) and immune complexes were
collected with protein A/G–agarose beads. Samples were fractionated by SDS–PAGE,
transferred to nitrocellulose membrane and probed with anti-T1R3 antibody. As a control
for the specificity of the interactions, we have shown that artificially mixing extracts from
cells expressing tagged T1R1 or T1R2 with extracts from cells expressing T1R3 does not
produce complexes. Similarly, co-transfection of a Rho-tagged mGluR1 receptor15 did not
produce T1R–GluR1 complexes.

Nerve recording
Lingual stimulation and recording procedures were performed as previously described27.
Neural signals were amplified (2,000 £ ) with a Grass P511 AC amplifier (Astro-Med),
digitized with a Digidata 1200B A/D convertor (Axon Instruments), and integrated (r.m.s.
voltage) with a time constant of 0.5 s. Taste stimuli were presented at a constant flow rate of
4 ml min21 for 20-s intervals interspersed by 2-min rinses between presentations. All data
analyses used the integrated response over a 25-s period immediately after the application
of the stimulus. Each experimental series consisted of the application of six tastants
bracketed by presentations of 0.1 M citric acid to ensure the stability of the recording. The
mean response to 0.1 M citric acid was used to normalize responses to each experimental
series.
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Some background information to our work on adeno-associated
virus (AAV)-induced apoptosis in cells lacking p53 activity was
omitted owing to space constraints. The oncosuppressive activity
of parvoviruses has been reviewed1,2. AAV inhibits cell cycle pro-
gression3, even when ultraviolet-inactivated4, as do AAV-coded Rep
proteins5. p53-dependent cytopathic effects of parvovirus H1 have
been reported6. H1 is an autonomous virus that can replicate in cells
and lyse them. This is different from AAV, which is defective and
does not replicate in the conditions we used. H1 and AAV share little
sequence homology and the structures of the DNA termini are not
the same. A
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