Embryonic assembly of a central pattern generator without sensory input


Locomotion depends on the integration of sensory information with the activity of central circuitry, which generates patterned discharges in motor nerves to appropriate muscles1,2. Isolated central networks generate fictive locomotor rhythms (recorded in the absence of movement), indicating that the fundamental pattern of motor output depends on the intrinsic connectivity and electrical properties of these central circuits3,4. Sensory inputs are required to modify the pattern of motor activity in response to the actual circumstances of real movement. A central issue for our understanding of how locomotor circuits are specified and assembled is the extent to which sensory inputs are required as such systems develop5. Here we describe the effects of eliminating sensory function and structure on the development of the peristaltic motor pattern of Drosophila embryos and larvae. We infer that the circuitry for peristaltic crawling develops in the complete absence of sensory input; however, the integration of this circuitry into actual patterns of locomotion requires additional information from the sensory system. In the absence of sensory inputs, the polarity of movement is deranged, and backward peristaltic waves predominate at the expense of forward peristalsis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Genetic elimination of sensory function or structure in the Drosophila embryonic peripheral nervous system.
Figure 2: Peristalsis in embryos expressing active and inactive TeTxLC in the peripheral nervous system.
Figure 3: Elimination of sensory input disrupts episodes of forward but not backward peristaltic waves.
Figure 4: Expression of tetanus toxin (TeTxLC) in the embryonic peripheral nervous system results in severely disrupted larval locomotion.
Figure 5: Bursts of forward peristalsis but not sporadic forward waves are eliminated by removal of sensory input.


  1. 1

    Dickinson, M. H. et al. How animals move: an integrative view. Science 288, 100–106 (2000).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Pearson, K. G. Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5, 786–791 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Marder, E. & Calabrese, R. L. Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Grillner, S. Neurobiological bases of rhythmic motor acts in vertebrates. Science 228, 143–149 (1985).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Sanes, D. H., Reh, T. A. & Harris, W. A. Development of the Nervous System (Academic, San Diego, 2000).

    Google Scholar 

  6. 6

    Berrigan, D. & Pepin, D. J. How maggots move: allometry and kinematics of crawling in larval diptera. J. Insect Physiol. 41, 329–337 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Kernan, M., Cowan, D. & Zucker, C. Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 12, 1195–1206 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Kaliss, N. The effect on development of a lethal deficiency in Drosophila melanogaster: with a description of the normal embryo at the time of hatching. Genetics 24, 244–270 (1939).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Siekhaus, D. E. & Fuller, R. S. A role for amontillado, the Drosophila homolog of the neuropeptide precursor processing protease PC2, in triggering hatching behaviour. J. Neurosci. 10, 6942–6954 (1999).

    Article  Google Scholar 

  10. 10

    Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  11. 11

    Hummel, T., Krukkert, K., Roos, J., Davis, G. & Klämbt, C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26, 357–370 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioural deficits. Neuron 14, 341–351 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Jan, Y. N. & Jan, L. Y. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A) 1207–1244 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  14. 14

    Huang, Z. & Kunes, S. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86, 411–422 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Schneiderman, A. M., Hildebrand, J. G., Brennan, M. M. & Tumlinson, J. H. Trans-sexually grafted antennae alter pheromone-directed behaviour in a moth. Nature 323, 801–803 (1986).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Nolo, R., Abbot, L. A. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–362 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Marder, E. Motor pattern generation. Curr. Opin. Neurobiol. 10, 691–698 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Richards, K. S. & Marder, E. The actions of crustacean cardioactive peptide on adult and developing stomatogastric ganglion motor patterns. J. Neurobiol. 44, 31–44 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Boothby, K. M. & Roberts, A. The stopping response of Xenopus laevis embryos: behaviour, development and physiology. J. Comp. Physiol. 170, 171–180 (1992).

    CAS  Article  Google Scholar 

  20. 20

    Haverkamp, L. J. & Oppenheim, R. W. Behavioural development in the absence of neural activity: effects of chronic immobilization on amphibian embryos. J. Neurosci. 6, 1332–1337 (1986).

    CAS  Article  Google Scholar 

  21. 21

    Hamburger, V. & Oppenheim, R. Prehatching motility and hatching behavior in the chick. J. Exp. Zool. 166, 171–203 (1967).

    CAS  Article  Google Scholar 

  22. 22

    van Mier, P., Armstrong, J. & Roberts, A. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation. Neuroscience 32, 113–126 (1989).

    CAS  Article  Google Scholar 

  23. 23

    Reynolds, S. A., French, K. A., Baader, A. & Kristan, W. B. Jr Development of spontaneous and evoked behaviors in the medicinal leech. J. Comp. Neurol. 402, 168–180 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. & Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Lin, D. M. & Goodman, C. S. Ectopic and increased expression of Fasciclin II alters motorneuron growth cone guidance. Neuron 13, 507–523 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Hildago, A., Urban, J. & Brand, A. H. Targeted ablation of glia disrupts axon tract formation in the Drosophila CNS. Development 121, 3703–3712 (1995).

    Google Scholar 

  30. 30

    Wang, J. W. et al. Morphometric description of the wandering behaviour in Drosophila larvae: aberrant locomotion in Na and K channel mutants revealed by computer-assisted motion analysis. J. Neurogenet. 11, 231–254 (1997).

    CAS  Article  Google Scholar 

Download references


We thank our colleagues in Cambridge and Toronto for comments on this work, and M. Sokolowski for providing support during its completion. M.L.S was funded by a Luis Velez Scholarship from the Venezuelan National Academy of Sciences at Clare College, Cambridge. M.B. is a Royal Society Research Professor. This work was supported by a grant from the Wellcome Trust.

Author information



Corresponding author

Correspondence to Maximiliano L. Suster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suster, M., Bate, M. Embryonic assembly of a central pattern generator without sensory input. Nature 416, 174–178 (2002). https://doi.org/10.1038/416174a

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing