Bacterial growth and primary production along a north–south transect of the Atlantic Ocean

Abstract

The oceanic carbon cycle is mainly determined by the combined activities of bacteria and phytoplankton1,2, but the interdependence of climate, the carbon cycle and the microbes is not well understood. To elucidate this interdependence, we performed high-frequency sampling of sea water along a north–south transect of the Atlantic Ocean. Here we report that the interaction of bacteria and phytoplankton is closely related to the meridional profile of water temperature, a variable directly dependent on climate. Water temperature was positively correlated with the ratio of bacterial production to primary production, and, more strongly, with the ratio of bacterial carbon demand to primary production. In warm latitudes (25° N to 30° S), we observed alternating patches of predominantly heterotrophic and autotrophic community metabolism. The calculated regression lines (for data north and south of the Equator) between temperature and the ratio of bacterial production to primary production give a maximum value for this ratio of 40% in the oligotrophic equatorial regions. Taking into account a bacterial growth efficiency3,4 of 30%, the resulting area of net heterotrophy (where the bacterial carbon demand for growth plus respiration exceeds phytoplankton carbon fixation4,5,6) expands from 8° N (27 °C) to 20° S (23 °C). This suggests an output of CO2 from parts of the ocean to the atmosphere6,7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Profiles of chlorophyll concentration (a) and bacterial growth (b) along the Atlantic transect.
Figure 2: Ratio of bacterial production to primary production (PP) in (%) on the meridional temperature scale.
Figure 3: Net heterotrophy in the Atlantic Ocean.

References

  1. 1

    Azam, F. Microbial control of oceanic carbon flux: The plot thickens. Science 280, 694–696 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Ducklow, H. W. The bacterial component of the oceanic euphotic zone. FEMS Microb. Ecol. 30, 1–10 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Amon, R. M. W. & Benner, R. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature 369, 549–552 (1994).

    ADS  CAS  Article  Google Scholar 

  4. 4

    del Giorgio, P. A., Cole, J. J. & Cimbleris, A. Respiration rates of bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385, 148–151 (1997).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Sorokin, Y. I. Bacterial populations as components of oceanic ecosystems. Mar. Biol. 11, 101–105 (1971).

    Google Scholar 

  6. 6

    Duarte, C. M. & Agusti, S. The CO2 balance of unproductive aquatic ecosystems. Science 281, 234–236 (1998).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Azam, F., Steward, G. F. & Ducklow, H. W. Significance of bacteria in carbon fluxes in the Arabian Sea. Proc. Ind. Acad. Sci. 103, 341–351 (1994).

    CAS  Google Scholar 

  8. 8

    Simon, M., Cho, B. C. & Azam, F. Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications. Mar. Ecol. Prog. Ser. 86, 103–110 (1992).

    ADS  Article  Google Scholar 

  9. 9

    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    ADS  Article  Google Scholar 

  10. 10

    Duarte, C. M., Agustí, S., Arístegui, J., Gonzáles, N. & Anadón, R. Evidence for a heterotrophic subtropical northeast Atlantic. Limnol. Oceanogr. 46, 425–428 (2001).

    ADS  Article  Google Scholar 

  11. 11

    Rivkin, R. B. & Legendre, L. Biogenic carbon cycling in the upper ocean: Effects of microbial respiration. Science 291, 2398–2400 (2001).

  12. 12

    Longhurst, A. Ecological Geography of the Ocean (Academic, London, 1998).

    Google Scholar 

  13. 13

    Zubkov, M. V., Sleight, M. A. & Burkill, P. H. Heterotrophic bacterial turnover along the 20°W meridian between 59°N and 37°N in July 1996. Deep-Sea Res. II 48, 987–1001 (2001).

    ADS  Article  Google Scholar 

  14. 14

    Lochte, K., Bjønsen, P. K., Giesenhagen, H. & Weber, A. Bacterial standing stock and production and their relation to phytoplankton in the Southern Ocean. Deep-Sea Res. II 44, 321–340 (1997).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Bird, D. F. & Kalff, J. Empirical relationship between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can. J. Fish. Aquat. Sci. 41, 1015–1023 (1984).

    Article  Google Scholar 

  16. 16

    Cole, J. J., Pace, M. L. & Findlay, S. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).

    ADS  Article  Google Scholar 

  17. 17

    Hurtt, G. C. & Armstrong, R. A. A pelagic ecosystem model calibrated with BATS data. Deep-Sea Res. II 43, 653–683 (1996).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Fasham, M. J. R., Boyd, P. W. & Savidge, G. Modelling the relative contributions of autotrophs and heterotrophs to carbon flow at a Lagrangian JGOFS station in the Northeast Atlantic. Limnol. Oceanogr. 44, 80–94 (1999).

    ADS  Article  Google Scholar 

  19. 19

    Kirchman, D. L., Rich, J. H. & Barber, R. T. Biomass and biomass production of heterotrophic bacteria along 140 W in the equatorial Pacific: effect of temperature on the microbial loop. Deep-Sea Res. II 42, 603–619 (1995).

    ADS  Article  Google Scholar 

  20. 20

    Karrasch, B., Hoppe, H.-G., Ullrich, S. & Podewski, S. The role of mesoscale hydrography on microbial dynamics in the northeast Atlantic: Results of a spring bloom experiment. J. Mar. Res. 54, 99–122 (1996).

    Article  Google Scholar 

  21. 21

    Rivkin, R. B., Anderson, M. R. & Lajzerowicz, C. Microbial processes in cold oceans. 1. Relationship between temperature and bacterial growth rate. Aquat. Microb. Ecol. 10, 243–254 (1996).

    Article  Google Scholar 

  22. 22

    Geider, R. J. Photosynthesis or planktonic respiration? Nature 388, 132 (1997).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Williams, P. J. le B. The balance of plankton respiration and photosynthesis in the open oceans. Nature 394, 55–57 (1998).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Williams, P. J. le B. & Bower, D. G. Regional carbon imbalances in the oceans. Science 284, 1735 (1999).

    Article  Google Scholar 

  25. 25

    Kuipers, B., van Noort, G. J., Vosjan, J. & Herndl, G. J. Diel periodicity of bacterioplankton in the euphotic zone of the subtropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 201, 13–25 (2000).

    ADS  Article  Google Scholar 

  26. 26

    Raymond, P. A. & Bauer, J. E. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409, 497–500 (2001).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Fuhrman, J. A. & Azam, F. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar. Biol. 66, 109–120 (1982).

    Article  Google Scholar 

  28. 28

    Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Hoppe, H.-G. in Current Methods in Aquatic Microbial Ecology (eds Kemp, P. F., Sherr, B. F., Sherr, E. B. & Cole, J. J.) 423–431 (CRC, Boca Raton, 1993).

    Google Scholar 

Download references

Acknowledgements

We thank K. Lochte and K. Jürgens for discussions, and Rory P. Wilson for linguistic corrections. We thank DFG and BMBF for support of our JGOFS programmes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans-Georg Hoppe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoppe, H., Gocke, K., Koppe, R. et al. Bacterial growth and primary production along a north–south transect of the Atlantic Ocean. Nature 416, 168–171 (2002). https://doi.org/10.1038/416168a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.