Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical discharge from a thundercloud top to the lower ionosphere


For over a century, numerous undocumented reports have appeared about unusual large-scale luminous phenomena above thunderclouds1,2,3,4,5,6 and, more than 80 years ago, it was suggested that an electrical discharge could bridge the gap between a thundercloud and the upper atmosphere7,8. Since then, two classes of vertically extensive optical flashes above thunderclouds have been identified—sprites9,10,11 and blue jets12,13,14. Sprites initiate near the base of the ionosphere, develop very rapidly downwards at speeds which can exceed 107 m s-1 (ref. 15), and assume many different geometrical forms16,17,18,19. In contrast, blue jets develop upwards from cloud tops at speeds of the order of 105 m s-1 and are characterized by a blue conical shape12,13,14. But no experimental data related to sprites or blue jets have been reported which conclusively indicate that they establish a direct path of electrical contact between a thundercloud and the lower ionosphere. Here we report a video recording of a blue jet propagating upwards from a thundercloud to an altitude of about 70 km, taken at the Arecibo Observatory, Puerto Rico. Above an altitude of 42 km—normally the upper limit for blue jets and the lower terminal altitude for sprites—the flash exhibited some features normally observed in sprites. As we observed this phenomenon above a relatively small thunderstorm cell, we speculate that it may be common and therefore represent an unaccounted for component of the global electric circuit.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: GOES-8 infrared image.
Figure 2: The time dynamics of the reported luminous event.


  1. Wood, C. A. Unusual lightning. Weather 6, 64 (1951).

    Google Scholar 

  2. Wright, J. B. A thunderstorm in the tropics. Weather 6, 230 (1951).

    Google Scholar 

  3. Vaughan, O. H. Jr & Vonnegut, B. Lightning to the ionosphere? Weatherwise 70–72 (April, 1982).

  4. Vaughan, O. H. Jr & Vonnegut, B. Recent observations of lightning discharges from the top of a thunderstorm into the clear air above. J. Geophys. Res. 94, 13179–13182 (1989).

    Article  ADS  Google Scholar 

  5. Hammerstrom, J. G. Mystery lightning. Aviat. Week Space Technol. (30 August, 1993).

  6. Rodger, C. J. Red sprites, upward lightning, and VLF perturbations. Rev. Geophys. 37, 317–336 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Wilson, C. T. R. The electric field of a thundercloud and some of its effects. Proc. Phys. Soc. Lond. 37, 32D–37D (1925).

    Article  Google Scholar 

  8. Wilson, C. T. R. A theory of thundercloud electricity. Proc. R. Soc. Lond. A 236, 297–317 (1956).

    Article  ADS  Google Scholar 

  9. Franz, R. C., Nemzek, R. J. & Winckler, J. R. Television image of a large upward electrical discharge above a thunderstorm system. Science 249, 48–51 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Sentman, D. D., Wescott, E. M., Osborne, D. L., Hampton, D. L. & Heavner, M. J. Preliminary results from the Sprites94 campaign: Red Sprites. Geophys. Res. Lett. 22, 1205–1209 (1995).

    Article  ADS  Google Scholar 

  11. Lyons, W. A. Sprite observations above the U.S. high plains in relation to their parent thunderstorm systems. J. Geophys. Res. 101, 29641–29652 (1996).

    Article  ADS  Google Scholar 

  12. Wescott, E. M., Sentman, D. D., Osborne, D. L., Hampton, D. L. & Heavner, M. J. Preliminary results from the sprites 94 aircraft campaign: 2. Blue jets. Geophys. Res. Lett. 22, 1209–1213 (1995).

    Article  ADS  Google Scholar 

  13. Wescott, E. M., Sentman, D. D., Heavner, M. J., Hampton, D. L. & Vaughan, O. H. Jr Blue jets: Their relationship to lightning and very large hailfall, and their physical mechanisms for their production. J. Atmos. Solar-Terr. Phys. 60, 713–724 (1998).

    Article  ADS  Google Scholar 

  14. Wescott, E. M. et al. New evidence for the brightness and ionization of blue starters and blue jets. J. Geophys. Res. 106, 21549–21554 (2001).

    Article  ADS  Google Scholar 

  15. Stanley, M. et al. High speed video of initial sprite development. Geophys. Res. Lett. 26, 3201–3204 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Gerken, E. A., Inan, U. S & Barrington-Leigh, C. P. Telescopic imaging of sprites. Geophys. Res. Lett. 27, 2637–2640 (2000).

    Article  ADS  Google Scholar 

  17. Stenbaek-Nielsen, H. C., Moudry, D. R., Wescott, E. M., Sentman, D. D. & Sao Sabbas, F. T. Sprites and possible mesospheric effects. Geophys. Res. Lett. 27, 3827–3831 (2000).

    Article  ADS  Google Scholar 

  18. Heavner, M. J. Optical Spectroscopic Observations of Sprites, Blue Jets, and Elves: Inferred Microphysical Processes and their Macrophysical Implications. Thesis, Univ. Alaska (2000).

    Google Scholar 

  19. Moudry, D. R., Stenbaek-Nielsen, H. C., Sentman, D. D. and Wescott, E. M. in Abstr. National Radio Science Meeting of URSI G/H3-12, 107 (Boulder, Colorado, 2001).

    Google Scholar 

  20. Uman, M. A. The Lightning Discharge (Academic, San Diego, 1987).

    Google Scholar 

  21. Petrov, N. I. & Petrova, G. N. Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere. Tech. Phys. 44, 472–475 (1999).

    Article  CAS  Google Scholar 

  22. Pasko, V. P., Inan, U. S. & Bell, T. F. Large scale modeling of sprites and blue jets. Eos 80, F218 (1999).

    Google Scholar 

  23. Pasko, V. P. & George, J. J. Three-dimensional modeling of blue jets and blue starters. Eos 82, F150 (2001).

    Google Scholar 

  24. Hale, L. C., Croskey, C. L. & Mitchell, J. D. Measurements of middle-atmosphere electric fields and associated electrical conductivities. Geophys. Res. Lett. 8, 927–930 (1981).

    Article  ADS  Google Scholar 

  25. Croskey, C. L., Hale, L. C. & Mitchell, J. D. Electrical stratification in the middle atmosphere. Adv. Space Res. 10, 49–52 (1990).

    Article  ADS  Google Scholar 

  26. Lyons, W. A., Stanley, M. A., Nelson, T. E. & Taylor, M. Sprites, elves, halos, trolls and blue starters above the STEPS Domain. Eos 81, F131 (2000).

    Article  Google Scholar 

  27. Wescott, E. M. et al. Starters: Brief upward discharges from an intense Arkansas thunderstorm. Geophys. Res. Lett. 23, 2153–2156 (1996).

    Article  ADS  Google Scholar 

  28. Sukhorukov, A. I., Mishin, E. V., Stubbe, P. & Rycroft, M. J. On blue jet dynamics. Geophys. Res. Lett. 23, 1625–1628 (1996).

    Article  ADS  Google Scholar 

  29. Roble, R. G. On modeling component processes in the Earth's global electric circuit. J. Atmos. Terr. Phys. 53, 831–847 (1991).

    Article  ADS  Google Scholar 

  30. Rycroft, M. J., Israelsson, S. & Price, C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Solar-Terr. Phys. 62, 1563–1576 (2000).

    Article  ADS  CAS  Google Scholar 

Download references


The GEN III intensifier was provided by ITT Night Vision Industries; we thank M. Robinson for support of our work. We thank W. Lyons for discussions, and S. Gonzalez, Q. Zhou, M. Sulzer, C. Tepley, J. Friedman, E. Robles, A. Venkataraman and E. Castro for support of our observations at Arecibo Observatory. The Arecibo Observatory is a component of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. This work was supported by a Small Grant for Exploratory Research from the National Science Foundation to Pennsylvania State University. Stanford participation was also supported by the Office of Polar Programs of the National Science Foundation.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Victor P. Pasko or Mark A. Stanley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pasko, V., Stanley, M., Mathews, J. et al. Electrical discharge from a thundercloud top to the lower ionosphere. Nature 416, 152–154 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing