Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A general process for in situ formation of functional surface layers on ceramics

Abstract

Ceramics are often prepared with surface layers of different composition from the bulk1,2, in order to impart a specific functionality to the surface or to act as a protective layer for the bulk material3,4. Here we describe a general process by which functional surface layers with a nanometre-scale compositional gradient can be readily formed during the production of bulk ceramic components. The basis of our approach is to incorporate selected low-molecular-mass additives into either the precursor polymer from which the ceramic forms, or the binder polymer used to prepare bulk components from ceramic powders. Thermal treatment of the resulting bodies leads to controlled phase separation (‘bleed out’) of the additives, analogous to the normally undesirable outward loss of low-molecular-mass components from some plastics5,6,7,8,9; subsequent calcination stabilizes the compositionally changed surface region, generating a functional surface layer. This approach is applicable to a wide range of materials and morphologies, and should find use in catalysts, composites and environmental barrier coatings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of a general process for in situ formation of functional surface layers on ceramics.
Figure 2: Surface gradient compositions and crystalline structure.
Figure 3: Surface appearances and cross-sections of fibre materials.
Figure 4: Alkali resistance of our ZrO2/SiC fibre with comparative results.

Similar content being viewed by others

References

  1. Singh, R. K., Gilbert, D. R., Fitz-Gerald, J., Harkness, S. & Lee, D. G. Engineered interfaces for adherent diamond coatings on larger thermal-expansion coefficient mismatched substrate. Science 272, 396–398 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Gogotsi, Y. G. & Yoshimura, M. Formation of carbon films on carbides under hydrothermal conditions. Nature 367, 628–630 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Roy, R. Ceramics by the solution-sol-gel route. Science 238, 1664–1669 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Besmann, T. M., Sheldon, B. W., Lowden, R. A. & Stinton, D. P. Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science 253, 1104–1109 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Kerk, S. L., Tay, S. C. & Hu, S. J. Effect of inherent deformations of leadframes on bleedability of plastic dip. J. Electron. Mater. 18 Part 1, 117–121 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Perovic, A. Morphological instability of poly(ethylene terephthalate) cyclic oligomer crystals. J. Mater. Sci. 20, 1370–1374 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Perovic, A. & Murti, D. K. The effect of coatings on the surface precipitation of oligomeric crystals in poly(ethylene terephthalate) films. J. Appl. Polym. Sci. 29 Part 2, 4321–4327 (1984).

    Article  CAS  Google Scholar 

  8. Needles, H. L., Berns, R. S., Lu, W. C., Alger, K. & Varma, D. S. Effect of nonionic surfactant and heat on selected properties on polyester. J. Appl. Polym. Sci. 25, 1737–1744 (1980).

    Article  CAS  Google Scholar 

  9. Perovic, A. & Sundararajan, P. R. Crystallization of cyclic oligomers in commercial poly(ethylene terephthalate) films. Polym. Bull. 6, 277–283 (1982).

    CAS  Google Scholar 

  10. Neubrand, A. & Rodel, J. Gradient materials: An overview of a novel concept. Z. Metallkd. 88, 358–371 (1997).

    CAS  Google Scholar 

  11. Gladden, L. F. et al. Structural studies of high surface area silicas. J. Non-Cryst. Solids 139, 47–59 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Dariel, M. P., Levin, L. & Frage, N. Graded ceramic preforms: Various proceeding approaches. Mater. Chem. Phys. 67, 192–198 (2001).

    Article  CAS  Google Scholar 

  13. Fischbach, D. B. & Lemoine, P. M. Influence of a CVD carbon coating on the mechanical property stability of nicalon silicon carbide fibre. Composites Sci. Technol. 37, 55–61 (1990).

    Article  Google Scholar 

  14. Li, J. X., Matsuo, Y. & Kimura, S. Improvement of thermal stability of SiC fibre by CVD-C.SiC coating. Bull. Ceram. Soc. Jpn 99, 1207–1211 (1991).

    Article  CAS  Google Scholar 

  15. Moya, J. S., Sanchez-Herencia, M. R., Pena, P. & Requena, J. Layered ceramic composites: A new family of advanced materials. Third Euro-Ceramics (eds Durán, P. & Fenández, J. F.) 3, 289–300 (Feenza Editrica Iberica, Spain, 1993).

    Google Scholar 

  16. Sidky, P. S. & Hocking, M. G. Review of inorganic coatings and coating processes for reducing wear and corrosion. Br. Corrosion J. 34, 171–183 (1999).

    Article  CAS  Google Scholar 

  17. Somiya, S. (ed.) Hydrothermal Reactions for Materials Science and Engineering (Elsevier, London, 1989).

    Google Scholar 

  18. Varaprasad, D. V., Wade, B., Venkatasubramanian, N., Desai, P. & Abhiraman, A. S. Critical requirements in the formation of continuous ceramic fibre precursors. Ind. J. Fibre Textile Res. 16, 73–82 (1991).

    CAS  Google Scholar 

  19. Bhat, D. G., Rebenne, H. E. & Strandberg, C. Analysis of coating interlayer between silicon nitride cutting tools and titanium carbide and titanium nitride coatings. J. Mater. Sci. 26, 4567–4580 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Takeda, M., Sakamoto, J., Saeki, A., Imai, Y. & Ichikawa, H. High performance silicon carbide fibre Hi-Nicalon for ceramic matrix composites. Ceram. Eng. Sci. Proc. 16, 37–44 (1995).

    Article  CAS  Google Scholar 

  21. Ishikawa, T., Kohtoku, Y., Kumagawa, K., Yamamura, T. & Nagasawa, T. High-strength alkali-resistant sintered SiC fibre stable to 2,200 °C. Nature 391, 773–775 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Yamaoka, H., Harada, Y. & Fujii, T. Inorganic fibre including zirconia and its production process. Japanese patent Application No. 2001-167679 (2001).

  23. Abe, Y., Gunji, T. & Hikita, M. Preparation of SiO2-TiO2 fibres from polytitanosiloxanes. Yogyo_kyokai-shi 94 (12), 1243–1245 (1986).

    CAS  Google Scholar 

  24. Shen, L., Tan, B. J., Willis, W. S., Galasso, F. S. & Suib, S. L. Characterization of dip-coated boron nitride on silicon carbide fibres. J. Am. Ceram. Soc. 77, 1011–1016 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Ishikawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, T., Yamaoka, H., Harada, Y. et al. A general process for in situ formation of functional surface layers on ceramics. Nature 416, 64–67 (2002). https://doi.org/10.1038/416064a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416064a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing