Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Massive star formation in 100,000 years from turbulent and pressurized molecular clouds

Abstract

Massive stars (with mass m* > 8 solar masses M) are fundamental to the evolution of galaxies, because they produce heavy elements, inject energy into the interstellar medium, and possibly regulate the star formation rate. The individual star formation time, t*f, determines the accretion rate of the star; the value of the former quantity is currently uncertain by many orders of magnitude1,2,3,4,5,6, leading to other astrophysical questions. For example, the variation of t*f with stellar mass dictates whether massive stars can form simultaneously with low-mass stars in clusters. Here we show that t*f is determined by the conditions in the star's natal cloud, and is typically 105 yr. The corresponding mass accretion rate depends on the pressure within the cloud—which we relate to the gas surface density—and on both the instantaneous and final stellar masses. Characteristic accretion rates are sufficient to overcome radiation pressure from 100M protostars, while simultaneously driving intense bipolar gas outflows. The weak dependence of t*f on the final mass of the star allows high- and low-mass star formation to occur nearly simultaneously in clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation of model parameters and results with kρ.
Figure 2: Derived properties of nearby massive protostars.

Similar content being viewed by others

References

  1. Bernasconi, P. A. & Maeder, A. About the absence of a proper zero age main sequence for massive stars. Astron. Astrophys. 307, 829–839 (1996).

    ADS  Google Scholar 

  2. McLaughlin, D. E. & Pudritz, R. E. Gravitational collapse and star formation in logotropic and nonisothermal spheres. Astrophys. J. 476, 750–765 (1997).

    Article  ADS  Google Scholar 

  3. Stahler, S. W., Palla, F. & Ho, P. T. P. in Protostars & Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 327–351 (Univ. Arizona Press, Tucson, 2000).

    Google Scholar 

  4. Behrend, R. & Maeder, A. Formation of massive stars by growing accretion rate. Astron. Astrophys. 373, 190–198 (2001).

    Article  ADS  Google Scholar 

  5. Osorio, M., Lizano, S. & D'Alessio, P. Hot molecular cores and the formation of massive stars. Astrophys. J. 525, 808–820 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Nakano, T., Hasegawa, T., Morino, J.-I. & Yamashita, T. Evolution of protostars accreting mass at very high rates: Is Orion IRc2 a huge protostar? Astrophys. J. 534, 976–983 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Plume, R., Jaffe, D. T., Evans, N. J. II, Martin-Pintado, J. & Gomez-Gonzalez, J. Dense gas and star formation: Characteristics of cloud cores associated with water masers. Astrophys. J. 476, 730–749 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Bertoldi, F. & McKee, C. F. Pressure-confined clumps in magnetized molecular clouds. Astrophys. J. 395, 140–157 (1992).

    Article  ADS  Google Scholar 

  9. Hillenbrand, L. A. & Hartmann, L. W. A preliminary study of the Orion nebula cluster structure and dynamics. Astrophys. J. 492, 540–553 (1998).

    Article  ADS  Google Scholar 

  10. van der Tak, F. F. S., van Dishoeck, E. F., Evans, N. J. II & Blake, G. A. Structure and evolution of the envelopes of deeply embedded massive young stars. Astrophys. J. 537, 283–303 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Vázquez-Semadeni, E., Ostriker, E. C., Passot, T., Gammie, C. F. & Stone, J. M. in Protostars & Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 3–28 (Univ. Arizona Press, Tucson, 2000).

    Google Scholar 

  12. Richer, J. S., Shepherd, D. S., Cabrit, S., Bachiller, R. & Churchwell, E. in Protostars & Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 867–894 (Univ. Arizona Press, Tucson, 2000).

    Google Scholar 

  13. Matzner, C. D. & McKee, C. F. Efficiencies of low-mass star and star cluster formation. Astrophys. J. 545, 364–378 (2000).

    Article  ADS  Google Scholar 

  14. McLaughlin, D. E. & Pudritz, R. E. A model for the internal structure of molecular cloud cores. Astrophys. J. 469, 194–208 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Larson, R. B. Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Stahler, S. W., Shu, F. H. & Taam, R. E. The evolution of protostars. I—Global formulation and results. Astrophys. J. 241, 637–654 (1980).

    Article  ADS  Google Scholar 

  17. Crutcher, R. M. Magnetic fields in molecular clouds: Observations confront theory. Astrophys. J. 520, 706–713 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Jijina, J. & Adams, F. C. Infall collapse solutions in the inner limit: Radiation pressure and its effects on star formation. Astrophys. J. 462, 874–887 (1996).

    Article  ADS  Google Scholar 

  19. Shu, F. H. Self-similar collapse of isothermal spheres and star formation. Astrophys. J. 214, 488–497 (1977).

    Article  ADS  Google Scholar 

  20. Palla, F. & Stahler, S. W. Star formation in the Orion nebula cluster. Astrophys. J. 525, 772–783 (1999).

    Article  ADS  Google Scholar 

  21. Wolfire, M. G. & Cassinelli, J. Conditions for the formation of massive stars. Astrophys. J. 319, 850–867 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Bonnell, I. A., Bate, M. R., Clarke, C. J. & Pringle, J. E. Competitive accretion in embedded stellar clusters. Mon. Not. R. Astron. Soc. 323, 785–794 (2001).

    Article  ADS  Google Scholar 

  23. Palla, F. & Stahler, S. W. The evolution of intermediate-mass protostars. II—Influence of the accretion flow. Astrophys. J. 392, 667–677 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Nakano, T., Hasegawa, T. & Norman, C. The mass of a star formed in a cloud core: Theory and its application to the Orion A cloud. Astrophys. J. 450, 183–195 (1995).

    Article  ADS  Google Scholar 

  25. Palla, F. & Stahler, S. W. The evolution of intermediate-mass protostars. I—Basic results. Astrophys. J. 375, 288–299 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. New grids of stellar models from 0.8 to 120 solar masses at Z = 0.020 and Z = 0.001. Astron. Astrophys. Suppl. 96, 269–331 (1992).

    ADS  Google Scholar 

  27. Hunter, T. R. et al. G34.24+0.13MM: A deeply embedded proto-B-star. Astrophys. J. 493, L97–L100 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Molinari, S., Testi, L., Brand, J., Cesaroni, R. & Palla, F. IRAS 23385+6053: A prototype massive class 0 object. Astrophys. J. 505, L39–L42 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Kaufman, M. J., Hollenbach, D. J. & Tielens, A. G. G. M. High-temperature molecular cores near massive stars and application to the Orion hot core. Astrophys. J. 497, 276–287 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Wyrowski, F., Schilke, P., Walmsley, C. M. & Menten, K. M. Hot gas and dust in a protostellar cluster near W3(OH). Astrophys. J. 514, L43–L46 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Stahler, R. Pudritz, M. Walmsley and M. Krumholz for discussions. This work was supported by the NSF, by NASA (which supports the Center for Star Formation Studies) and (for J.C.T.) by a Spitzer-Cotsen fellowship from Princeton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher F. McKee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKee, C., Tan, J. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds. Nature 416, 59–61 (2002). https://doi.org/10.1038/416059a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416059a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing