Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Out of Africa again and again

Abstract

The publication of a haplotype tree of human mitochondrial DNA variation in 1987 provoked a controversy about the details of recent human evolution that continues to this day. Now many haplotype trees are available, and new analytical techniques exist for testing hypotheses about recent evolutionary history using haplotype trees. Here I present formal statistical analysis of human haplotype trees for mitochondrial DNA, Y-chromosomal DNA, two X-linked regions and six autosomal regions. A coherent picture of recent human evolution emerges with two major themes. First is the dominant role that Africa has played in shaping the modern human gene pool through at least two—not one—major expansions after the original range extension of Homo erectus out of Africa. Second is the ubiquity of genetic interchange between human populations, both in terms of recurrent gene flow constrained by geographical distance and of major population expansion events resulting in interbreeding, not replacement.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A new model of recent human evolution.
Figure 2: The distributions for the ages of the youngest clade contributing to a significant inference of gene flow constrained by isolation by distance at the highest nesting level for the genes MX1, PDHA1, EDN and ECP, and at intermediate nesting levels for the β-globin (β-Hb) locus and the Xq13.3 region.
Figure 3: The distributions for the ages of the youngest clade contributing to a significant inference of a population range expansion for mtDNA, Y-DNA, MC1R, MS205, and the β-globin (β-Hb) locus.

References

  1. Relethford, J. H. Genetics and the Search for Modern Human Origins (Wiley, New York, 2001).

    Google Scholar 

  2. Stoneking, M. & Soodyall, H. Human evolution and the mitochondrial genome. Curr. Opin. Genet. Dev. 6, 731–736 (1996).

    CAS  Article  Google Scholar 

  3. Wolpoff, M. H., Hawks, J. & Caspari, R. Multiregional, not multiple origins. Am. J. Phys. Anthropol. 112, 129–136 (2000).

    CAS  Article  Google Scholar 

  4. Weidenreich, F. Apes, Giants, and Man (Univ. Chicago Press, Chicago, 1946).

    Google Scholar 

  5. Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    ADS  CAS  Article  Google Scholar 

  6. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507 (1991).

    ADS  CAS  Article  Google Scholar 

  7. Maddison, D. R. African origin of human mitochondrial DNA reexamined. Syst. Zool. 40, 355–363 (1991).

    Article  Google Scholar 

  8. Templeton, A. R. Human origins and analysis of mitochondrial DNA sequences. Science 255, 737 (1992).

    ADS  CAS  Article  Google Scholar 

  9. Ingman, M., Kaessmann, H., Pääbo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000).

    ADS  CAS  Article  Google Scholar 

  10. Sykes, B., Leiboff, A., Low-Beer, J., Tetzner, S. & Richards, M. The origins of the Polynesians: an interpretatioon from mitochondrial lineage analysis. Am. J. Hum. Genet. 57, 1463–1475 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Torroni, A. et al. Asian affinities and continental radiation of the four founding native American mtDNAs. Am. J. Hum. Genet. 53, 563–590 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Torroni, A. et al. mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans. Am. J. Hum. Genet. 53, 591–608 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hammer, M. F. et al. Out of Africa and back again: Nested cladistic analysis of human Y chromosome variation. Mol. Biol. Evol. 15, 427–441 (1998).

    CAS  Article  Google Scholar 

  14. Harris, E. E. & Hey, J. X. Chromosome evidence for ancient human histories. Proc. Natl Acad. Sci. USA 96, 3320–3324 (1999).

    ADS  CAS  Article  Google Scholar 

  15. Kaessman, H., Heißig, F., Haeseler, A. V. & Pääbo, S. DNA sequence variation in a non-coding region of low recombination on the human X chromosome. Nature Genet. 22, 78–81 (1999).

    Article  Google Scholar 

  16. Harding, R. M. et al. Archaic African and Asian lineages in the genetic ancestry of modern humans. Am. J. Hum. Genet. 60 772–789 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin, L. et al. Distribution of haplotypes from a chromosome 21 region distinguishes multiple prehistoric human migrations. Proc. Natl Acad. Sci. USA 96, 3796–3800 (1999).

    ADS  CAS  Article  Google Scholar 

  18. Rana, B. K. et al. High polymorphism at the human melanocortin 1 receptor locus. Genetics 151, 1547–1557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rogers, E. J., Shone, A. C., Alonso, S., May, C. A. & Armour, J. A. L. Integrated analysis of sequence evolution and population history using hypervariable compound haplotypes. Hum. Mol. Genet. 9, 2675–2681 (2000).

    CAS  Article  Google Scholar 

  20. Zhang, J. & Rosenberg, H. F. Sequence variation at two eosinophil-associated ribonuclease loci in humans. Genetics 156, 1949–1958 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Templeton, A. R., Routman, E. & Phillips, C. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the Tiger Salamander, Ambystoma tigrinum. Genetics 140, 767–782 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Posada, D., Crandall, K. A. & Templeton, A. R. GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9, 487–488 (2000).

    CAS  Article  Google Scholar 

  23. Templeton, A. R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol. Ecol. 7, 381–397 (1998).

    CAS  Article  Google Scholar 

  24. Bernatchez, L. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55, 351–379 (2001).

    CAS  Article  Google Scholar 

  25. Gomez, A., Carvalho, G. R. & Hunt, D. H. Phylogeography and regional endemism of a passively dispersing zooplankter: mitochondrial DNA variation in rotifer resting egg banks. Proc. R. Soc. Lond. B 267, 2189–2197 (2000).

    CAS  Article  Google Scholar 

  26. Nielson, M., Lohman, K. & Sullivan, J. Phylogeography of the tailed frog (Ascaphus truei): Implications for the biogeography of the Pacific Northwest. Evol. 55, 147–160 (2001).

    CAS  Article  Google Scholar 

  27. Turner, T. F., Trexler, J. C., Harris, J. L. & Haynes, J. L. Nested cladistic analysis indicates population fragmentation shapes genetic diversity in a freshwater mussel. Genetics 154, 777–785 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Templeton, A. R., Crandall, K. A. & Sing, C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Posada, D. TCS 1.06 (Provo, Utah, 2000); available at http://bioag.byu.edu/zoology/crandall_lab/tcs.htm.

  30. Crandall, K. A. & Templeton, A. R. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134, 959–969 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Templeton, A. R. in Conceptual Issues in Modern Human Origins Research (eds Clark, G. A. & Willermet, C. M.) 329–360 (Aldine de Gruyter, New York, 1997).

    Google Scholar 

  32. Templeton, A. R. Human races: A genetic and evolutionary perspective. Am. Anthropol. 100, 632–650 (1998).

    Article  Google Scholar 

  33. Templeton, A. R. Using phylogeographic analyses of gene trees to test species status and processes. Mol. Ecol. 10 779–791 (2001).

    CAS  Article  Google Scholar 

  34. Excoffier, L. & Langaney, A. Origin and differentiation of human mitochondrial DNA. Am. J. Human. Genet. 44, 73–85 (1989).

    CAS  Google Scholar 

  35. Excoffier, L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J. Mol. Evol. 30, 125–139 (1990).

    ADS  CAS  Article  Google Scholar 

  36. Donnelly, P. & Tavare, S. Coalescents and genealogical structure under neutrality. Annu. Rev. Genet. 29, 401–421 (1995).

    CAS  Article  Google Scholar 

  37. Takahata, N., Lee, S.-H. & Satta, Y. Testing multiregionality of modern human origins. Mol. Biol. Evol. 18, 172–183 (2001).

    CAS  Article  Google Scholar 

  38. Haile-Selassie, Y. Late Miocene hominids from the Middle Awash, Ethiopia. Nature 412, 178–181 (2001).

    ADS  CAS  Article  Google Scholar 

  39. Pickford, M. & Senut, B. The geological and faunal context of the Late Miocene hominid remains from Lukeino, Kenya. C.R. Acad. Sci. IIA 332, 145–152 (2001).

    Google Scholar 

  40. Templeton, A. R. The “Eve” hypothesis: a genetic critique and reanalysis. Am. Anthropol. 95, 51–72 (1993).

    Article  Google Scholar 

  41. Alonso, S. & Armour, J. A. L. A highly variable segment of human subterminal 16p reveals a history of population growth for modern humans outside Africa. Proc. Natl. Acad. Sci. USA 98, 864–869 (2001).

    ADS  CAS  Article  Google Scholar 

  42. Rannala, B. & Bertorelle, G. Using linked markers to infer the age of a mutation. Hum. Mutat. 18, 87–100 (2001).

    CAS  Article  Google Scholar 

  43. Gabunia, L. et al. Earliest Pleistovene hominid cranial remains from Dmanisi, Republic of Georgia: Taxonomy, geological setting, and age. Science 288, 1019–1025 (2000).

    ADS  CAS  Article  Google Scholar 

  44. Aguirre, E. & Carbonell, E. Early human expansions into Eurasia: The Atapuerca evidence. Quat. Int. 75, 11–18 (2001).

    Article  Google Scholar 

  45. Bar-Yosef, O. & Belfer-Cohen, A. From Africa to Eurasia—early dispersals. Quat. Int. 75, 19–28 (2001).

    Article  Google Scholar 

  46. Hou, Y. M. et al. Mid-Pleistocene Acheulean-like stone technology of the Bose basin, South China. Science 287, 1622–1626 (2000).

    CAS  Article  Google Scholar 

  47. Saragusti, I. & Goren-Inbar, N. The biface assemblage from Gesher Benot Ya'aqov, Israel: illuminating patterns in “Out of Africa” dispersal. Quat. Int. 75, 85–89 (2001).

    Article  Google Scholar 

  48. Otte, M. in Archaeogenetics: DNA and the Population Prehistory of Europe (eds Renfrew, C. & Boyle, K.) 41–44 (Univ. Cambridge, Cambridge, 1999).

    Google Scholar 

  49. Smith, F. H., Falsetti, A. B. & Donnelly, S. M. Modern human origins. Yb. Physical Anthrop. 32, 35–68 (1989).

    Article  Google Scholar 

  50. Wolpoff, M., Thorne, A. G., Smith, F. H., Frayer, D. W. & Pope, G. G. in Origins of Anatomically Modern Humans (eds Nitecki, M. H. & Nitecki, D. V.) 175–200 (Plenum, New York, 1994).

    Book  Google Scholar 

Download references

Acknowledgements

I thank J. Brisson, J. Hess, R. Koch, M. Kramer, R. Robertson and J. Strasburg for suggestions on an earlier draft of this manuscript. I also thank E. Trinkhaus and J. Relethford for their reviews. This work was supported in part by a Burroughs Wellcome Fund Innovation Award in Functional Genomics.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Templeton, A. Out of Africa again and again. Nature 416, 45–51 (2002). https://doi.org/10.1038/416045a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416045a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing