Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global environmental controls of diversity in large herbivores

Abstract

Large mammalian herbivores occupy half of the earth's land surface and are important both ecologically and economically1, but their diversity is threatened by human activities2. We investigated how the diversity of large herbivores changes across gradients of global precipitation and soil fertility. Here we show that more plant-available moisture reduces the nutrient content of plants but increases productivity, whereas more plant-available nutrients increase both of these factors. Because larger herbivore species tolerate lower plant nutrient content but require greater plant abundance, the highest potential herbivore diversity should occur in locations with intermediate moisture and high nutrients. These areas are dry enough to yield high quality plants and support smaller herbivores, but productive enough to support larger herbivores. These predictions fit with observed patterns of body size and diversity for large mammalian herbivores in North America, Africa and Australia, and yield a global map of regions with potentially high herbivore diversity. Thus, gradients of precipitation, temperature and soil fertility might explain the global distribution of large herbivore diversity and help to identify crucial areas for conservation and restoration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plant biomass and tissue nitrogen content changes across rainfall gradients in Africa.
Figure 2: Predicted and observed patterns of herbivore diversity along gradients of plant-available moisture and nutrients.
Figure 3: Global distribution of large herbivore diversity, as predicted by indices for plant-available moisture and nutrients using a regression model obtained from data for African and North American parks.

Similar content being viewed by others

References

  1. Owen-Smith, N. Megaherbivores. The Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, Cambridge, 1988).

    Book  Google Scholar 

  2. Prins, H. H. T. The pastoral road to extinction: Competition between wildlife and traditional pastoralism in East Africa. Environ. Conserv. 19, 117–123 (1992).

    Article  Google Scholar 

  3. Bell, R. H. V. in Ecology of Tropical Savannas (eds Huntly, B. J. & Walker, B. H.) 193–216 (Springer, Berlin, 1982).

    Book  Google Scholar 

  4. East, R. Rainfall, nutrient status and biomass of large African savannah mammals. Afr. J. Ecol. 22, 245–270 (1984).

    Article  Google Scholar 

  5. McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 142–144 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Coe, M. in Nitrogen as an Ecological Factor (eds Lee, J. A., McNeill, J. & Rorison, I. H.) 345–368 (Oxford, Blackwell, 1983).

    Google Scholar 

  7. Du Toit, J. T. & Owen-Smith, N. Body size, population metabolism and habitat specialization among large African herbivores. Am. Nat. 133, 736–740 (1989).

    Article  Google Scholar 

  8. Belovsky, G. E. Optimal foraging and community structure: The allometry of herbivore food selection and competition. Evol. Ecol. 11, 641–672 (1997).

    Article  Google Scholar 

  9. Western, D. & Ssemakula, J. The future of savanna ecosystems: ecological islands or faunal enclaves? Afr. J. Ecol. 19, 7–19 (1981).

    Article  Google Scholar 

  10. Huston, M. A. Biological Diversity. The Coexistence of Species on Changing Landscapes (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  11. Danell, K. L. P. & Niemela, P. Species richness in mammalian herbivores: patterns in the boreal zone. Ecography 19, 404–409 (1996).

    Article  Google Scholar 

  12. Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  13. Prins, H. H. T. & Olff, H. in Dynamics of Tropical Communities (eds Newbery, D., Prins, H. H. T. & Brown, G.) 449–489 (Blackwell Science, Oxford, 1998).

    Google Scholar 

  14. Walker, B. H. & Langridge, J. L. Predicting savanna vegetation structure on the basis of plant available moisture (PAM) and plant available nutrients (PAN): A case study from Australia. J. Biogeogr. 24, 813–825 (1997).

    Article  Google Scholar 

  15. Breman, H. & De Wit, C. T. Rangeland productivity and exploitation in the Sahel. Science 221, 1341–1347 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Breman, H. & Krul, J. M. in La Productivité de Pâturages Sahéliens. Une Etude des Sols, des Végétations et de l'Explotation de cette Ressource Naturelle (eds Penning de Vries, F. W. T. & Djiteye, M. A.) 322–345 (Pudoc, Wageningen, 1991).

    Google Scholar 

  17. Milchunas, D. G., Varnamkhasti, A. S., Lauenroth, W. K. & Goetz, H. Forage quality in relation to long-term grazing history, current-year defoliation, and water resource. Oecologia 101, 366–374 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Jarman, P. J. The social organization of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).

    Article  Google Scholar 

  19. Van Soest, P. J. Nutritional Ecology of the Ruminant: Ruminant Metabolism, Nutritional Strategies, the Cellulolytic Fermentation and the Chemistry of Forages and Plant Fibres (O & B Books, Corvallis, 1982).

    Google Scholar 

  20. Belovsky, G. E. Generalist herbivore foraging and its role in competitive interactions. Am. Zool. 26, 51–69 (1986).

    Article  Google Scholar 

  21. Owen-Smith, N. Pleistocene extinctions: The pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).

    Article  Google Scholar 

  22. Eisenberg, J. F. The Mammalian Radiations. An Analysis of Trends in Evolution, Adaptation, and Behaviour (Athlone, London, 1981).

    Google Scholar 

  23. Huston, M. A. Biological diversity, soils and economics. Science 262, 1676–1680 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Myers, N., Mittelmeier, R. A., Mittelmeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Alcamo, J. et al. Modeling the global society-biosphere-climate system: Part 2. Computed scenarios. Water Air Soil Poll. 76, 37–78 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Murray, M. G. in Serengeti II. Dynamics, Management and Conservation of an Ecosystem (eds Sinclair, A. R. E. & Arcese, P.) 231–256 (Univ. Chicago Press, Chicago, 1995).

    Google Scholar 

  27. Kinyamario, J. I. & Macharia, J.-N. M. Aboveground standing crop, protein content and dry matter digestibility of a tropical grassland range in the Nairobi National Park, Kenya. Afr. J. Ecol. 30, 33–41 (1992).

    Article  Google Scholar 

  28. Prins, H. H. T. Ecology and Behaviour of the African Buffalo. Social Inequality and Decision Making (Chapman & Hall, London, 1996).

    Book  Google Scholar 

  29. van Wijngaarden, W. Elephants–Trees–Grass–Grazers, relationships between climate, soils, vegetation and large herbivores in a semi-arid savanna ecosystem (Tsavo, Kenya). (ITC Publication no. 4, Enschede, 1985).

  30. Voeten, M. M. Living with wildlife. Coexistence of wildlife and livestock in an East African savanna ecosystem. Tropical Resource Management Papers no. 29 (Wageningen Univ., Wageningen, 1999).

Download references

Acknowledgements

We thank E. S. Bakker, J. P. Bakker, W. J. Bond, F. S. Chapin III, G. E. Belovsky, S. J. McNaughton, D. Milchunas, N. Owen-Smith, F. J. Weissing and D. Tilman for comments; M. A. Huston for soil fertility data; and R. Leemans for temperature and rainfall data. Financial support was provided by the Dutch NWO (WOTRO and ALW), Wageningen University, the NSF, the Utah Agricultural Experiment Station, and the Utah State University Ecology Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Olff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olff, H., Ritchie, M. & Prins, H. Global environmental controls of diversity in large herbivores. Nature 415, 901–904 (2002). https://doi.org/10.1038/415901a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415901a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing